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Abstract. One can determine all primitive number fields of a given
degree and discriminant with a finite search of potential defining poly-
nomials. We develop an asymptotic formula for the number of polyno-
mials which need to be inspected which reflects both archimedean and
non-archimedean restrictions placed on the coefficients of a defining poly-
nomial.

Several authors have used Hunter’s theorem to find a defining polynomial

xn + a1x
n−1 + · · ·+ an−1x+ an ∈ Z[x]

for each primitive degree n field of absolute discriminant D less than or equal
to some cutoff ∆. The method requires a computer search over all vectors
(a1, . . . , an) satisfying certain bounds.

In [JR1] we explained that one is sometimes particularly interested in the
fields with D = ∆, especially when all primes dividing D are very small. To
find just these fields by a Hunter search, one imposes not only archimedean
inequalities on the ai as above, but also p-adic inequalities for each prime p
dividing D. This is an example of a targeted search, the target being D.

In this paper we investigate the search volume of such Hunter searches, which
approximates the number of polynomials one is required to inspect. We find that
these search volumes have the form

Search Volumen(D ≤ ∆) = C(n,∞)∆(n+2)/4

Search Volumen(D = ∆) =





∏

pd||D

C
(

n, pd
)



C(n,∞)∆(n−2)/4 .

In Section 1 we work over R. The constant C(n,∞) is a sum of constants
C
(

n,∞d
)

, one for each possible signature r + 2d = n. We identify the constant
C
(

n,∞0
)

using a Selberg integral; the remaining integrals are harder and we
evaluate them in the cases n ≤ 7.

In Sections 2 and 3 we work over Qp. The constant C
(

n, pd
)

is a sum of con-
stants C

(

n, pd,K
)

, one for each possible p-adic completion K with discriminant



pd. Evaluating C
(

n, pd,K
)

requires evaluating an Igusa integral. We evaluate a
few cases exactly and get a reasonable simple upper bound in all cases.

In Sections 4 and 5 we work over Q. Section 4 describes Hunter’s theorem
and gives an asymptotic formula for the number of defining polynomials of a
degree n algebra within a given search radius. In Section 5 we prove the above
search volume formulas, and discuss how our results apply in practice.

We have carried out all targeted searches for n ≤ 5, and D of the form
paqb with p and q primes ≤ 19. Complete tables are available at [J1]. Our
computations here show that the enormously harder case n = 6 is feasible too.
Search results will appear at [J1] as they become available.

We now fix some notation. Let F be a field of characteristic zero; typically
F = Q or one of its completions Qv in this paper. We work with finite di-
mensional F -algebras K. Here, all algebras are assumed to be separable. So, K
factors canonically as a product of fields, K =

∏

Ki.
We will work with monic degree n polynomials

f(x) = xn + a1x
n−1 + · · ·+ an−1x+ an ∈ F [x] .

Often we think of such polynomials as simply elements (a1, . . . , an) of Fn. If
f(x) is separable, then we call f(x) a defining polynomial for the F -algebra
K = F [x]/f(x). The factorization K =

∏

Ki is induced by the factorization
f(x) =

∏

fi(x) into irreducibles, via Ki = F [x]/fi(x).
Conversely, let K be an algebra and y ∈ K. Let fy(x) be the characteristic

polynomial of y acting on K by multiplication. Basic algebraic facts about the
map c : K → Fn defined by y 7→ fy underlie many of our considerations. For
example, c induces a surjection

(Regular elements of K)→ (Defining polynomials for K)

with Aut(K) acting freely and transitively on the fibers. This accounts for the
presence of |Aut(K)| in many formulas.

If f(x) =
∏n
i=1(x − yi) we put D(f) =

∏

i<j(yi − yj)2 and think of D as
a polynomial function of the aj , as usual. Finally, if F ⊆ C we let T2(f) =
∑n
i=1 |yi|2.

1 Archimedean Volumes

Let A be a degree n algebra over R. So, we can simply take A = Rr ×Cd for
some r + 2d = n. The characteristic polynomial of y ∈ A is

fy(x) = xn + a1x
n−1 + · · ·+ an−1x+ an ∈ R[x] .

Let A0 be the set of elements of A with trace 0, and consider the corresponding
space of polynomials

P 0(A, r) =
{

fy ∈ R[x] : y ∈ A0 and T2(fy) ≤ r2
}

.

We measure the volume of P 0(A, r) with respect to the usual volume form
da2 · · · dan.



Proposition 1.1.

vol(P 0(A, r)) = vol(P 0(A, 1)) r(n+2)(n−1)/2

Proof. One has a linear map

L:P 0(A, 1)→ P 0(A, r)
(a2, . . . , an) 7→ (r2a2, . . . , r

nan) .

The Jacobian of this map is r to the power

n
∑

j=2

j =
(n+ 2)(n− 1)

2
.

ut

This simple observation is the most important point in analyzing Hunter searches.
We work more generally with

ζA(s) :=
∫

P 0(A,1)

|D|s− 1
2 da2 · · · dan .

The desired volume vol(P 0(A, 1)) is just the special value ζA(1/2). A general
formula for ζA(s) would be desirable, since it would give one the moments of
the polynomial discriminants encountered in a Hunter search. For example, to
compute the average polynomial discriminant encountered one needs the number
ζA(3/2), as well as ζA(1/2).

Let A0(1) be the unit ball in A0; it is a degree |Aut(A)| cover of P 0(A, 1) via
the characteristic polynomial map c. One can pull back the defining integral to
A0(1); at this step the Jacobian |D|1/2 enters the integrand. One can next extend
the integral to the full unit ball A(1). Using the homogeneity of the integrand,
one can replace the sharp radial cutoff ρ ≤ 1 by an integral over all of A against
a Gaussian e−ρ

2/2. The net result is

ζA(s) =
2n(s−ns−1)/2

|Aut(A)|
√
πn

(

(ns+ 1)(n− 1)
2

)

!

∫

A

e−ρ
2/2|D|sω .

Here ω is the standard volume form on A, giving the unit ball ρ ≤ 1 its usual
volume πn/2/(n/2)!. Also |Aut(Rr ×Cd)| = r!d!2d.

Proposition 1.2.

vol(P 0(Rn, 1)) =
2−n(n−5)/4

∏n
j=1(j/2)!

n!
√
πn

(

(n+ 2)(n− 1)
4

)

!



Proof. In the case A = Rn the roots y1,. . . ,yn are coordinates on A and ω =
dy1 · · · dyn. A special case of Selberg’s integral is

∫ ∞

−∞
· · ·
∫ ∞

−∞
e−r

2/2|D|s dy1 · · · dyn = (2π)n/2
n
∏

j=1

(js)!
s!

;

see e.g. [M1], 17.6.7. Evaluating at s = 1/2 this becomes 23n/2
∏n
j=1(j/2)!, yield-

ing the proposition. ut

Proposition 1.3. The ratios vol(P 0(Rr×Cd, 1))/vol(P 0(Rn, 1)) for n ≤ 7 are
as follows.

d\n 3 4 5 6 7
0 1 1 1 1 1
1 5 18 58 179 543
2 9 134 1

3 1355 11875
3 451 2

3 17466 1
3

Proof. Let
I =

∏

1≤i<j≤n

(yi − yj)

be the indicated square root of D. We need to compute
∫

Rr×Cd

e−ρ
2/2|I| ω .

Taking yr+1, . . . , yr+d as coordinates on Cd and writing yk = (uk + ivk)/
√

2 one
has

ρ2 =
r
∑

j=1

y2
j +

d
∑

k=1

(u2
k + v2

k)

ω = dy1 · · · dyr du1 · · · dud dv1 · · · dvd

|I| = f(y1, . . . , yr, u1, . . . , ud, v1, . . . , vd)
∏

1≤i<j≤r

|yi − yj |
d
∏

k=1

|vk|

with f a polynomial. One can expand f and integrate out the uk’s and the vk’s
using

∫ ∞

0

e−x
2/2xj dx = 2(j−1)/2

(

j − 1
2

)

!

2d times on each term. One is left with an integral of the form

∫ ∞

−∞
· · ·
∫ ∞

−∞
e−(y2

1+...+y2
r)/2





∏

1≤i<j≤r

|yi − yj |



 g(y1, . . . , yr) dy1 · · · dyr

with g(y1, . . . , yr) a symmetric polynomial in the yi. Here the absolute values
pose a problem. For r ≤ 3 this obstruction can be surmounted in an elementary
way and one can again integrate term-by-term. When d = 1 the moment formulas
in [M1], Section 17.8 suffice. This covers all cases with n ≤ 7. ut



The case of cubics f(x) = x3 + a2x + a3 is illustrative. The two regions
P 0(A, 1) are shown in Figure 1. In the case A = R×C, let r2 = y2

1 + |y2|2 + |y3|2

- 0.4 - 0.2 0 0.2 0.4

a2

- 0.2

- 0.1

0

0.1

0.2

a3 R3 R x C

Fig. 1. The sets P 0(A, 1) for cubics f(x) = x3 + a2x+ a3

and express the real root y1 as rt. Then the defining integral for ζR×C(s) can be
evaluated by changing variables from (a2, a3) to 0 ≤ r ≤ 1, −

√

2/3 ≤ t ≤
√

2/3.
The result is

ζR×C(s) =
√
π 2−s−132s− 1

2 (s− 1/2)!
(1 + 3s) s! 2F1

(

−2s,
1
2

+ s; 1 + s;
2
3

)

.

The presence of the hypergeometric function 2F1 indicates that the general
ζRr×Cd(s) is more complicated than the general ζRn(s).

2 Ultrametric Masses

The set of isomorphism classes of degree n algebras A over Qp is much more
complicated than in the archimedean case v =∞. A starting point for analyzing
this set is a mass formula, due to Krasner and Serre [S1]. Here is a quick summary,
more details being contained in [R2].

The mass of A is by definition mA := 1/|Aut(A)|. Let Qun
p be a maximal

unramified extension of Qp and put Aun = A ⊗Qun
p . Call two algebras A1 and

A2 geometrically equivalent if Aun
1
∼= Aun

2 . Then, the sum of mA over A in a
geometric equivalence class is 1.

Let mn,pd be the sum of mA over all totally ramified A of degree n and
discriminant pd. Then, in the tame case p - n, the only non-vanishing mn,pd is
mn,pn−1 = 1. The first few wild cases are shown in Table 1. Other wild cases
are more complicated, but are also governed by the Krasner-Serre mass formula
∑

dmn,pd p
n−1−d = 1.

The general case reduces to the totally ramified case just summarized. Given
A, from the canonical factorization Aun =

∏

Aun
i one gets an unordered collec-

tion of (ni, di). The sum of mA over algebras A giving rise to these (ni, di) is
∏

mni,pdi . In particular, the degree partition λA = (n1, n2, . . .) is a complete
geometric invariant of a tame algebra.



Table 1. Masses for low degree wildly ramified algebras

mp,pd =







p− 1 if p ≤ d ≤ 2p− 2
p if d = 2p− 1
0 else

d m4,2d m6,2d m6,3d

4 1
5
6 2 1 2
7 2
8 4 2
9 4 6

10 4 4 6
11 8 8 9

Let M(n, pd) be the sum of mA over all p-adic algebras with degree n and
discriminant pd. The above discussion is sufficient for computing M(n, pd) for
n ≤ 7. The integers M(n, pd) appear in Corollary 3.3 and also the table in
Section 5.

3 Ultrametric Volumes

Let A be a degree n algebra over Qp, with ring of integers O, and discriminant
pdA . Define

P (A) = {fy(x) ∈ Zp[x] : y ∈ O} .

We measure volumes with da1 · · · dan, so that all of Znp gets volume 1.

Proposition 3.1. With ZA(t) as defined in the proof below,

(i) vol(P (A)) =
ZA(1/p)

|Aut(A)| pdA
(ii) ZA(1/p) ≤ 1.

Proof. Let ω be Haar measure on A, normalized so that ω(O) = 1. We use the
characteristic polynomial map c:O → P (A). Pulled back to O, the polynomial
discriminant function D factors as pdAI2. Here, I is a polynomial function on O
with Zp coefficients. Note, Zp[y] has index 1/|I(y)|p in O.

The Jacobian function c∗(da1 · · · dan)/ω is p−dA |I|p. On regular elements,
i.e. elements on which I is non-zero, c has degree Aut(A). So

ζA(s) :=
∫

P (A)

|D|s−
1
2

p da1 · · · dan =
1

|Aut(A)|

∫

O
|pdAI2|s−

1
2

p p−dA |I|p ω

=
1

|Aut(A)| pdA( 3
2−s)

∫

O
|I|2sp ω

=
ZA(p−2s)

|Aut(A)| pdA( 3
2−s)

.



Here we have defined

ZA(t) =
∞
∑

j=0

ω(O[j])tj

with O[j] the set of y ∈ O with |I(y)|p = 1/pj . Plugging in s = 1/2 gives part
(i).

To prove part (ii), we note that ZA(t) is a power series with positive coeffi-
cients such that ZA(1) = ω(O) = 1. It is an increasing function on [0, 1] and so
ZA(1/p) ≤ 1. ut

The function ZA(t) is an example of an Igusa zeta function [D1]. Thus, it is
known to be in Q(t).

Proposition 3.1 and its proof make no reference to the classification of p-adic
algebras sketched in Section 2. Define

P (λ) =
⋃

λA=λ

P (A)

P (n, pd) =
⋃

dA=d

P (A) .

Summing over A with λA = λ in Proposition 3.1 and using the Krasner-Serre
mass formula gives Corollary 3.2 below. Summing over A with dA = d in Propo-
sition 3.1 and using the definition of M(n, pd) gives Corollary 3.3.

Corollary 3.2. For λ a partition of n,

vol(P (λ)) ≤ 1
pn−`(λ)

.

where `(λ) denotes the length of λ.

Corollary 3.3. For d ∈ Z≥0,

vol
(

P
(

n, pd
))

≤ M(n, pd)
pd

.

On the other hand, one can also prove Corollary 3.2 directly, using neither the
Krasner-Serre mass formula, nor Proposition 3.1.
Direct proof of Corollary 3.2. Write λ = (λ1, . . . , λ`(λ)), with each λi > 0. Let
P (λ)1 ⊂ Fnp be the reduction of P (λ) ⊂ Znp . For e a positive integer, let µe be
the number of i such that λi = e. Very simply,

P (λ)1 =

{

∏

e

fe(x)e
}

where fe(x) ∈ Fp[x] is monic of degree µe. To give an element of P (λ)1 is to
give the coefficients of the fe. There are

∑

µe = `(λ) coefficients, and so P (λ)1

is p`(λ)/pn of Fnp . ut



It would be nice to compute ZA(1/p) exactly. To do this it seems necessary
to compute all of ZA(t). We have succeeded when n is prime and A is a field;
the results in the unramified case U and the totally ramified case R are

ZU (t) =
1− 1

pn−1

1− tn(n−1)/2

pn−1

ZR(t) =

(

1− 1
p

)

(

1− t(n−1)2/2

pn−1

)

(

1− t(n−1)/2

p

)(

1− tn(n−1)/2

pn−1

) .

We have also computed several more difficult ZA(t), sometimes directly, and
sometimes making use of the stationary phase formula [D1], Theorem 3.4. The
resulting formulas are quite complicated.

4 The Search Set

Let K be a degree n algebra over Q with absolute discriminant D. With respect
to the quadratic form T2, one has an orthogonal decomposition K = K0 ⊕Q,
K0 being the subspace of traceless elements.

Let O be the ring of integers in K. Let O′ be the projection of O to K0. As
a lattice in the Euclidean space K0 ⊗R, O′ has covolume

√

D/n.
Let gm be the smallest real number so that every lattice in Euclidean space

Rm with covolume V has a non-zero vector of length ≤ (gmV 2)1/(2m). The value
of gm is known ([CS1], Table 1.2) for m ≤ 8.

m 1 2 3 4 5 6 7 8
gm 1 1 1

3 2 4 8 21 1
3 64 256

In the literature one often sees Hermite’s constant γm = m
√
gm instead of gm.

Define

rD =
(

gn−1D

n

)1/(2n−2)

.

One gets immediately that in O′ there is a non-zero vector y′ of length ≤ rD.
The subalgebra Q(y′) of K strictly contains Q; so if K is a primitive field, Q(y′)
is automatically all of K.

Henceforth in this paper we take n ≥ 3 to avoid trivialities. By replacing
y′ by −y′ one can assume that a′3 ≥ 0 in its characteristic polynomial. As j
varies from 0 to n − 1, exactly one of y = y′ − j/n is in O. This element y
has characteristic polynomial fy ∈ P (rD); here the search set P (r) is the set of
polynomials

f(x) =
n
∏

i=1

(x− yi) = xn + a1x
n−1 + · · ·+ an−1x+ an ∈ Z[x]

satisfying the two conditions



(i) trace condition:

a1 ∈ {0, . . . , n− 1} and a3 ≥
(n− 2)a1a2

n
− (n− 1)(n− 2)a3

1

3n2

(ii) length condition:

T2(f) ≤ a2
1

n
+ r2 .

Proposition 4.1. Let K be a degree n algebra over Q with absolute discrimi-
nant D. Let m(K,∆) be the number of defining polynomials for K in P (r∆).

(i) If K is a primitive field and D ≤ ∆, then m(K,∆) ≥ 1.
(ii) For general K,

m(K,∆) ∼ mn

|Aut(K)|

√

∆

D
with mn =

√
gn−1 π

(n−1)/2

2
(

n−1
2

)

!

as ∆→∞.

Proof. Part (i) is essentially Hunter’s theorem, see e.g. [C1], Theorem 6.4.1. It
is proved by our discussion above. Our trace condition is a modification of the
standard one. We make this modification in order to fully exploit the involution
y′ 7→ −y′, thereby making |P (r)| as small as possible.

For Part (ii), let O′∆,+ be the subset of O′ consisting of elements y′ with
length ≤ r∆ and a′3 ≥ 0. Let O′reg,∆,+ be the subset of O′∆,+ consisting of
regular elements. Then

|Aut(K)| m(K,∆) = |O′reg,∆,+| ∼ |O′∆,+| ∼
(Volume of ball of radius r∆)

2 (Covolume of O′)

=
(r∆
√
π)n−1/

(

n−1
2

)

!

2
√

D/n
=
√
gn−1π

(n−1)/2

2
(

n−1
2

)

!

√

∆

D

as ∆→∞. ut

Part (ii) relates to the phenomenon that searches tend to find several defining
polynomials for each primitive field sought, as well as defining polynomials for
non-primitive fields. For 3 ≤ n ≤ 9 one has

n 3 4 5 6 7 8 9
mn 1.8 3.0 4.9 7.4 11.9 18.9 32.5

to one decimal place.



5 Timing Analysis

To incorporate targeting into the formalism, let S be a finite set of places of Q
containing ∞. For v ∈ S, let Av be a degree n algebra over Qv. Let

P ({Av}, r) = {f(x) ∈ P (r) : Qv[x]/f(x) ∼= Av for v ∈ S} .

From Proposition 4.1, P ({Av}, r∆) contains a defining polynomial for every
primitive degree n field K with absolute discriminant D ≤ ∆ and Kv

∼= Av,
v ∈ S.
Proposition 5.1.

|P ({Av}, r∆)| ∼ n

2

(gn−1

n

)(n+2)/4

vol(P 0(A∞, 1))

(

∏

p

vol(P (Ap))

)

∆(n+2)/4

as ∆→∞.

Proof. For elements in P ({A∞}, r∆) there are n possible values of a1, each giv-
ing asymptotically the same number of polynomials; this accounts for the fac-
tor n. Those with a1 = 0 are the intersection of the standard lattice Zn−1

with the interior of the region P 0(A∞, r∆)+ in Rn−1. The + indicates the
extra condition a3 ≥ 0, and accounts for the 2 in the denominator. Propo-
sition 1.1 and the definition of r∆ account for the factor vol(P 0(A∞, r∆)) =
(gn−1∆/n)(n+2)/4vol(P 0(A∞, 1)). Finally the ultrametric conditions account for
the extra factors vol(P (Ap)). ut

The deeper Propositions 1.2 and 1.3 determine the archimedean volumes for
n ≤ 7; Proposition 3.1 bounds the ultrametric volumes in general.

Proposition 5.1 is an asymptotic formula. However one would expect, and
experience shows, that it applies well when ∆ is simply the product of the
discriminants of the Ap’s. In this restricted context, and summing over p-adic
algebras with a given discriminant, the formula can be restated as follows. Define

C(n,∞d) =
n

2

(gn−1

n

)(n+2)/4

vol
(

P 0(Rn−2d ×Cd, 1)
)

C(n, pd) = vol
(

P
(

n, pd
))

pd .

Then, a Hunter search for all primitive fields of signature (n − 2d∞, d∞) and
absolute discriminant

∏

pdp requires inspection of approximately

C(n,∞d∞)
∏

p

C(n, pdp)pdp(n−2)/4

polynomials. (Naturally there are no such fields unless (−1)d∞
∏

pdp is congruent
to 0 or 1 modulo 4. If n = 6, some searches can be replaced by easier searches
via sextic twinning [R1].)

In the literature there are several methods which allow one to implement
the length inequality and target the local algebra at ∞ with little loss [BFP1],



[SPD1], [O1], [DO1]. In principal, p-adic bounds on the ai giving only the slight
loss C(n, pd) ≤M(n, pd) of Corollary 3.3 are easy to describe since they amount
to collections of congruences on the ai. For example, in the tame case one can
follow the direct proof of Corollary 3.2. In practice, for large p and/or n it can
become unwieldy to implement sharp p-adic bounds as well.

Table 2 below gives what we call local difficulty ratings, namely the numbers
log10(C(n,∞d)) and log10(M(n, pd)pd(n−2)/4). All entries are rounded to the
nearest tenth. The rows labelled All give totals for all values of d.

Table 2. Local Difficulty Ratings

d ∞ 2 3 5 7 11 13 ∞ 2 3 5 7 11 13

0 −3.1 Quartics −5.3 Quintics
1 −1.9 − 0.2 0.3 0.4 0.5 0.6 −3.5 − 0.4 0.5 0.6 0.8 0.8
2 −2.2 0.6 0.5 1.0 1.1 1.3 1.4 −3.1 0.8 0.7 1.3 1.6 1.9 2.0
3 0.8 1.2 1.0 1.3 1.6 1.7 1.0 1.6 1.9 2.2 2.6 2.8
4 0.9 1.3 1.5 2.1 − 2.5 3.1 3.3
5 1.1 1.7 1.7 2.5 3.2
6 1.7 2.1 2.6 3.7
7 − − 4.3
8 1.8 2.4 4.8
9 2.0 2.6 5.4

10 2.1 2.9
11 2.6 3.4

All −1.7 2.9 1.9 1.4 1.5 1.8 1.9 −3.0 3.6 3.0 5.5 2.7 3.3 3.5

0 −8.1 Sextics −11.4 Septics
1 −5.9 − 0.5 0.7 0.8 1.0 1.1 −8.7 − 0.6 0.9 1.1 1.3 1.4
2 −5.0 0.9 1.0 1.7 2.0 2.4 2.5 −7.3 1.1 1.2 2.0 2.4 2.9 3.1
3 −5.5 1.2 2.0 2.6 3.0 3.6 3.8 −7.2 1.4 2.4 3.1 3.6 4.4 4.7
4 1.9 2.7 3.1 3.9 4.6 4.9 2.2 3.2 4.0 4.8 5.8 6.2
5 2.1 3.1 4.2 4.2 5.2 5.6 2.5 3.9 5.1 5.8 7.0 7.4
6 2.8 3.8 4.8 3.4 4.7 6.2 − 7.8 8.4
7 2.7 4.1 5.5 3.5 5.2 7.0 8.2
8 3.5 4.8 6.2 4.3 5.9 7.9 9.2
9 3.9 5.4 7.0 4.6 6.4 8.8 10.3

10 4.1 5.9 5.0 7.1 9.4 11.3
11 4.8 6.2 5.6 7.5 12.4
12 4.7 5.7 13.5
13 5.1 6.3 14.6
14 5.4 6.5

All −4.8 5.7 6.4 7.1 4.4 5.3 5.7 −6.9 6.8 7.7 9.5 14.6 7.9 8.4

The translation from search volumes to search times requires that one incor-
porate a number of practical concerns as well. All told, one can expect that a
degree n search with difficulty x will take longer than a degree n−1 search with



difficulty x. For our current programs, in degrees 5 and 6 on a medium speed
personal computer, the translation from volumes to times goes as follows.

For quintics, searches with difficulty rating x take us about 10x−7.9 days. For
example, the search for all 2113659 quintics has difficulty rating −3.0 + 3.4 +
2.6 + 5.4 = 8.4 and took 100.5 ≈ 3 days.

For sextics, searches with difficulty rating x take us about 10x−7.3 days. For
example, the search for all primitive 21459 sextics has difficulty rating −4.8 +
5.4 + 7.0 = 7.6 and took around 100.3 ≈ 2 days.

In [JR1] we found all sextic fields ramified within S = {∞, 2, 3}. Table 2
shows that a few other {∞, p, q} are easier, while harder cases like {∞, 3, 5} are
feasible too.
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