# **Timing Analysis of Targeted Hunter Searches**

John W. Jones<sup>1</sup> and David P. Roberts<sup>2</sup>

 <sup>1</sup> Department of Mathematics, Arizona State University, Box 871804 Tempe, AZ 85287 jj@asu.edu
 <sup>2</sup> Department of Mathematics, Hill Center, Rutgers University New Brunswick, NJ 08903 davrobts@math.rutgers.edu

**Abstract.** One can determine all primitive number fields of a given degree and discriminant with a finite search of potential defining polynomials. We develop an asymptotic formula for the number of polynomials which need to be inspected which reflects both archimedean and non-archimedean restrictions placed on the coefficients of a defining polynomial.

Several authors have used Hunter's theorem to find a defining polynomial

 $x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n \in \mathbf{Z}[x]$ 

for each primitive degree n field of absolute discriminant D less than or equal to some cutoff  $\Delta$ . The method requires a computer search over all vectors  $(a_1, \ldots, a_n)$  satisfying certain bounds.

In [JR1] we explained that one is sometimes particularly interested in the fields with  $D = \Delta$ , especially when all primes dividing D are very small. To find just these fields by a Hunter search, one imposes not only archimedean inequalities on the  $a_i$  as above, but also *p*-adic inequalities for each prime p dividing D. This is an example of a *targeted* search, the target being D.

In this paper we investigate the *search volume* of such Hunter searches, which approximates the number of polynomials one is required to inspect. We find that these search volumes have the form

Search Volume<sub>n</sub>
$$(D \le \Delta) = C(n, \infty)\Delta^{(n+2)/4}$$
  
Search Volume<sub>n</sub> $(D = \Delta) = \left(\prod_{p^d \mid \mid D} C(n, p^d)\right) C(n, \infty)\Delta^{(n-2)/4}$ 

In Section 1 we work over **R**. The constant  $C(n, \infty)$  is a sum of constants  $C(n, \infty^d)$ , one for each possible signature r + 2d = n. We identify the constant  $C(n, \infty^0)$  using a Selberg integral; the remaining integrals are harder and we evaluate them in the cases  $n \leq 7$ .

In Sections 2 and 3 we work over  $\mathbf{Q}_p$ . The constant  $C(n, p^d)$  is a sum of constants  $C(n, p^d, K)$ , one for each possible *p*-adic completion K with discriminant

 $p^d$ . Evaluating  $C(n, p^d, K)$  requires evaluating an Igusa integral. We evaluate a few cases exactly and get a reasonable simple upper bound in all cases.

In Sections 4 and 5 we work over  $\mathbf{Q}$ . Section 4 describes Hunter's theorem and gives an asymptotic formula for the number of defining polynomials of a degree n algebra within a given search radius. In Section 5 we prove the above search volume formulas, and discuss how our results apply in practice.

We have carried out all targeted searches for  $n \leq 5$ , and D of the form  $p^a q^b$  with p and q primes  $\leq 19$ . Complete tables are available at [J1]. Our computations here show that the enormously harder case n = 6 is feasible too. Search results will appear at [J1] as they become available.

We now fix some notation. Let F be a field of characteristic zero; typically  $F = \mathbf{Q}$  or one of its completions  $\mathbf{Q}_v$  in this paper. We work with finite dimensional F-algebras K. Here, all algebras are assumed to be separable. So, K factors canonically as a product of fields,  $K = \prod K_i$ .

We will work with monic degree n polynomials

$$f(x) = x^{n} + a_{1}x^{n-1} + \dots + a_{n-1}x + a_{n} \in F[x]$$

Often we think of such polynomials as simply elements  $(a_1, \ldots, a_n)$  of  $F^n$ . If f(x) is separable, then we call f(x) a defining polynomial for the *F*-algebra K = F[x]/f(x). The factorization  $K = \prod K_i$  is induced by the factorization  $f(x) = \prod f_i(x)$  into irreducibles, via  $K_i = F[x]/f_i(x)$ .

Conversely, let K be an algebra and  $y \in K$ . Let  $f_y(x)$  be the characteristic polynomial of y acting on K by multiplication. Basic algebraic facts about the map  $c: K \to F^n$  defined by  $y \mapsto f_y$  underlie many of our considerations. For example, c induces a surjection

(Regular elements of K)  $\rightarrow$  (Defining polynomials for K)

with  $\operatorname{Aut}(K)$  acting freely and transitively on the fibers. This accounts for the presence of  $|\operatorname{Aut}(K)|$  in many formulas.

If  $f(x) = \prod_{i=1}^{n} (x - y_i)$  we put  $D(f) = \prod_{i < j} (y_i - y_j)^2$  and think of D as a polynomial function of the  $a_j$ , as usual. Finally, if  $F \subseteq \mathbf{C}$  we let  $T_2(f) = \sum_{i=1}^{n} |y_i|^2$ .

## 1 Archimedean Volumes

Let A be a degree n algebra over **R**. So, we can simply take  $A = \mathbf{R}^r \times \mathbf{C}^d$  for some r + 2d = n. The characteristic polynomial of  $y \in A$  is

$$f_y(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n \in \mathbf{R}[x]$$
.

Let  $A^0$  be the set of elements of A with trace 0, and consider the corresponding space of polynomials

$$P^{0}(A,r) = \{ f_{y} \in \mathbf{R}[x] : y \in A^{0} \text{ and } T_{2}(f_{y}) \le r^{2} \}$$

We measure the volume of  $P^0(A, r)$  with respect to the usual volume form  $da_2 \cdots da_n$ .

## Proposition 1.1.

$$\operatorname{vol}(P^0(A, r)) = \operatorname{vol}(P^0(A, 1)) r^{(n+2)(n-1)/2}$$

*Proof.* One has a linear map

$$L: P^{0}(A, 1) \to P^{0}(A, r)$$
  
 $(a_{2}, \dots, a_{n}) \mapsto (r^{2}a_{2}, \dots, r^{n}a_{n})$ .

The Jacobian of this map is r to the power

$$\sum_{j=2}^{n} j = \frac{(n+2)(n-1)}{2} \; .$$

This simple observation is the most important point in analyzing Hunter searches. We work more generally with

$$\zeta_A(s) := \int_{P^0(A,1)} |D|^{s-\frac{1}{2}} da_2 \cdots da_n$$

The desired volume vol( $P^0(A, 1)$ ) is just the special value  $\zeta_A(1/2)$ . A general formula for  $\zeta_A(s)$  would be desirable, since it would give one the moments of the polynomial discriminants encountered in a Hunter search. For example, to compute the average polynomial discriminant encountered one needs the number  $\zeta_A(3/2)$ , as well as  $\zeta_A(1/2)$ .

Let  $A^0(1)$  be the unit ball in  $A^0$ ; it is a degree  $|\operatorname{Aut}(A)|$  cover of  $P^0(A, 1)$  via the characteristic polynomial map c. One can pull back the defining integral to  $A^0(1)$ ; at this step the Jacobian  $|D|^{1/2}$  enters the integrand. One can next extend the integral to the full unit ball A(1). Using the homogeneity of the integrand, one can replace the sharp radial cutoff  $\rho \leq 1$  by an integral over all of A against a Gaussian  $e^{-\rho^2/2}$ . The net result is

$$\zeta_A(s) = \frac{2^{n(s-ns-1)/2}}{|\operatorname{Aut}(A)| \sqrt{\pi n} \left(\frac{(ns+1)(n-1)}{2}\right)!} \int_A e^{-\rho^2/2} |D|^s \omega .$$

Here  $\omega$  is the standard volume form on A, giving the unit ball  $\rho \leq 1$  its usual volume  $\pi^{n/2}/(n/2)!$ . Also  $|\operatorname{Aut}(\mathbf{R}^r \times \mathbf{C}^d)| = r!d!2^d$ .

Proposition 1.2.

$$\operatorname{vol}(P^{0}(\mathbf{R}^{n},1)) = \frac{2^{-n(n-5)/4} \prod_{j=1}^{n} (j/2)!}{n! \sqrt{\pi n} \left(\frac{(n+2)(n-1)}{4}\right)!}$$

*Proof.* In the case  $A = \mathbf{R}^n$  the roots  $y_1, \ldots, y_n$  are coordinates on A and  $\omega = dy_1 \cdots dy_n$ . A special case of Selberg's integral is

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-r^2/2} |D|^s \, dy_1 \cdots dy_n = (2\pi)^{n/2} \prod_{j=1}^n \frac{(js)!}{s!}$$

;

see e.g. [M1], 17.6.7. Evaluating at s = 1/2 this becomes  $2^{3n/2} \prod_{j=1}^{n} (j/2)!$ , yielding the proposition.

**Proposition 1.3.** The ratios  $\operatorname{vol}(P^0(\mathbf{R}^r \times \mathbf{C}^d, 1))/\operatorname{vol}(P^0(\mathbf{R}^n, 1))$  for  $n \leq 7$  are as follows.

| $d \backslash n$ | 3 | 4  | 5                | 6                | 7                                 |
|------------------|---|----|------------------|------------------|-----------------------------------|
| 0                | 1 | 1  | 1                | 1                | 1                                 |
| 1                | 5 | 18 | 58               | 179              | 543                               |
| 2                |   | 9  | $134\frac{1}{3}$ | 1355             | 11875                             |
| 3                |   |    | 5                | $451\frac{2}{3}$ | $\frac{1}{3}$ 17466 $\frac{1}{3}$ |

*Proof.* Let

$$I = \prod_{1 \le i < j \le n} (y_i - y_j)$$

be the indicated square root of D. We need to compute

,

$$\int_{\mathbf{R}^r \times \mathbf{C}^d} e^{-\rho^2/2} |I| \; \omega$$

Taking  $y_{r+1}, \ldots, y_{r+d}$  as coordinates on  $\mathbf{C}^d$  and writing  $y_k = (u_k + iv_k)/\sqrt{2}$  one has

$$\rho^{2} = \sum_{j=1}^{r} y_{j}^{2} + \sum_{k=1}^{a} (u_{k}^{2} + v_{k}^{2})$$
  

$$\omega = dy_{1} \cdots dy_{r} \, du_{1} \cdots du_{d} \, dv_{1} \cdots dv_{d}$$
  

$$|I| = f(y_{1}, \dots, y_{r}, u_{1}, \dots, u_{d}, v_{1}, \dots, v_{d}) \prod_{1 \le i < j \le r} |y_{i} - y_{j}| \prod_{k=1}^{d} |v_{k}|$$

with f a polynomial. One can expand f and integrate out the  $u_k$ 's and the  $v_k$ 's using

$$\int_0^\infty e^{-x^2/2} x^j \, dx = 2^{(j-1)/2} \left(\frac{j-1}{2}\right)!$$

2d times on each term. One is left with an integral of the form

,

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-(y_1^2 + \ldots + y_r^2)/2} \left( \prod_{1 \le i < j \le r} |y_i - y_j| \right) g(y_1, \ldots, y_r) \, dy_1 \cdots dy_r$$

with  $g(y_1, \ldots, y_r)$  a symmetric polynomial in the  $y_i$ . Here the absolute values pose a problem. For  $r \leq 3$  this obstruction can be surmounted in an elementary way and one can again integrate term-by-term. When d = 1 the moment formulas in [M1], Section 17.8 suffice. This covers all cases with  $n \leq 7$ .

The case of cubics  $f(x) = x^3 + a_2x + a_3$  is illustrative. The two regions  $P^0(A, 1)$  are shown in Figure 1. In the case  $A = \mathbf{R} \times \mathbf{C}$ , let  $r^2 = y_1^2 + |y_2|^2 + |y_3|^2$ 



**Fig. 1.** The sets  $P^{0}(A, 1)$  for cubics  $f(x) = x^{3} + a_{2}x + a_{3}$ 

and express the real root  $y_1$  as rt. Then the defining integral for  $\zeta_{\mathbf{R}\times\mathbf{C}}(s)$  can be evaluated by changing variables from  $(a_2, a_3)$  to  $0 \le r \le 1, -\sqrt{2/3} \le t \le \sqrt{2/3}$ . The result is

$$\zeta_{\mathbf{R}\times\mathbf{C}}(s) = \frac{\sqrt{\pi} \ 2^{-s-1} 3^{2s-\frac{1}{2}} (s-1/2)!}{(1+3s) \ s!} \ _2F_1\left(-2s, \frac{1}{2}+s; 1+s; \frac{2}{3}\right)$$

The presence of the hypergeometric function  $_2F_1$  indicates that the general  $\zeta_{\mathbf{R}^n \times \mathbf{C}^d}(s)$  is more complicated than the general  $\zeta_{\mathbf{R}^n}(s)$ .

## 2 Ultrametric Masses

The set of isomorphism classes of degree n algebras A over  $\mathbf{Q}_p$  is much more complicated than in the archimedean case  $v = \infty$ . A starting point for analyzing this set is a mass formula, due to Krasner and Serre [S1]. Here is a quick summary, more details being contained in [R2].

The mass of A is by definition  $m_A := 1/|\operatorname{Aut}(A)|$ . Let  $\mathbf{Q}_p^{\operatorname{un}}$  be a maximal unramified extension of  $\mathbf{Q}_p$  and put  $A^{\operatorname{un}} = A \otimes \mathbf{Q}_p^{\operatorname{un}}$ . Call two algebras  $A_1$  and  $A_2$  geometrically equivalent if  $A_1^{\operatorname{un}} \cong A_2^{\operatorname{un}}$ . Then, the sum of  $m_A$  over A in a geometric equivalence class is 1.

Let  $m_{n,p^d}$  be the sum of  $m_A$  over all totally ramified A of degree n and discriminant  $p^d$ . Then, in the tame case  $p \nmid n$ , the only non-vanishing  $m_{n,p^d}$  is  $m_{n,p^{n-1}} = 1$ . The first few wild cases are shown in Table 1. Other wild cases are more complicated, but are also governed by the Krasner-Serre mass formula  $\sum_d m_{n,p^d} p^{n-1-d} = 1$ .

The general case reduces to the totally ramified case just summarized. Given A, from the canonical factorization  $A^{\text{un}} = \prod A_i^{\text{un}}$  one gets an unordered collection of  $(n_i, d_i)$ . The sum of  $m_A$  over algebras A giving rise to these  $(n_i, d_i)$  is  $\prod m_{n_i, p^{d_i}}$ . In particular, the degree partition  $\lambda_A = (n_1, n_2, \ldots)$  is a complete geometric invariant of a tame algebra.

Table 1. Masses for low degree wildly ramified algebras

|                                                                                                                      | d    | $m_{4,2^d}$ | $m_{6,2^d}$ | $m_{6,3^d}$ |
|----------------------------------------------------------------------------------------------------------------------|------|-------------|-------------|-------------|
|                                                                                                                      | 4    | 1           |             |             |
|                                                                                                                      | 5    |             |             |             |
| $\int p-1 \text{ if } p \leq d \leq 2p$                                                                              | -2 6 | 2           | 1           | 2           |
| $m_{p,p^d} = \begin{cases} p-1 \text{ if } p \le d \le 2p \\ p  \text{ if } d = 2p-1 \\ 0  \text{ else} \end{cases}$ | 7    |             |             | 2           |
| 0 else                                                                                                               | 8    | 4           | 2           |             |
|                                                                                                                      | 9    | 4           |             | 6           |
|                                                                                                                      | 10   | 4           | 4           | 6           |
|                                                                                                                      | 11   | 8           | 8           | 9           |
|                                                                                                                      |      |             |             |             |

Let  $M(n, p^d)$  be the sum of  $m_A$  over all *p*-adic algebras with degree *n* and discriminant  $p^d$ . The above discussion is sufficient for computing  $M(n, p^d)$  for  $n \leq 7$ . The integers  $M(n, p^d)$  appear in Corollary 3.3 and also the table in Section 5.

## 3 Ultrametric Volumes

Let A be a degree n algebra over  $\mathbf{Q}_p$ , with ring of integers  $\mathcal{O}$ , and discriminant  $p^{d_A}$ . Define

$$P(A) = \{ f_y(x) \in \mathbf{Z}_p[x] : y \in \mathcal{O} \}$$

We measure volumes with  $da_1 \cdots da_n$ , so that all of  $\mathbf{Z}_p^n$  gets volume 1.

**Proposition 3.1.** With  $Z_A(t)$  as defined in the proof below,

(i) 
$$\operatorname{vol}(P(A)) = \frac{Z_A(1/p)}{|\operatorname{Aut}(A)|} \frac{1}{p^{d_A}}$$
  
(ii)  $Z_A(1/p) \le 1.$ 

*Proof.* Let  $\omega$  be Haar measure on A, normalized so that  $\omega(\mathcal{O}) = 1$ . We use the characteristic polynomial map  $c: \mathcal{O} \to P(A)$ . Pulled back to  $\mathcal{O}$ , the polynomial discriminant function D factors as  $p^{d_A}I^2$ . Here, I is a polynomial function on  $\mathcal{O}$  with  $\mathbf{Z}_p$  coefficients. Note,  $\mathbf{Z}_p[y]$  has index  $1/|I(y)|_p$  in  $\mathcal{O}$ .

with  $\mathbf{Z}_p$  coefficients. Note,  $\mathbf{Z}_p[y]$  has index  $1/|I(y)|_p$  in  $\mathcal{O}$ . The Jacobian function  $c^*(da_1\cdots da_n)/\omega$  is  $p^{-d_A}|I|_p$ . On regular elements, i.e. elements on which I is non-zero, c has degree Aut(A). So

$$\begin{split} \zeta_A(s) &:= \int_{P(A)} |D|_p^{s-\frac{1}{2}} \, da_1 \cdots da_n = \frac{1}{|\operatorname{Aut}(A)|} \int_{\mathcal{O}} |p^{d_A} I^2|_p^{s-\frac{1}{2}} \, p^{-d_A} \, |I|_p \, \omega \\ &= \frac{1}{|\operatorname{Aut}(A)|} \frac{1}{p^{d_A(\frac{3}{2}-s)}} \int_{\mathcal{O}} |I|_p^{2s} \, \omega \\ &= \frac{Z_A(p^{-2s})}{|\operatorname{Aut}(A)|} \frac{1}{p^{d_A(\frac{3}{2}-s)}} \, \cdot \end{split}$$

Here we have defined

$$Z_A(t) = \sum_{j=0}^{\infty} \omega(\mathcal{O}[j]) t^j$$

with  $\mathcal{O}[j]$  the set of  $y \in \mathcal{O}$  with  $|I(y)|_p = 1/p^j$ . Plugging in s = 1/2 gives part (i).

To prove part (*ii*), we note that  $Z_A(t)$  is a power series with positive coefficients such that  $Z_A(1) = \omega(\mathcal{O}) = 1$ . It is an increasing function on [0, 1] and so  $Z_A(1/p) \leq 1$ .

The function  $Z_A(t)$  is an example of an Igusa zeta function [D1]. Thus, it is known to be in  $\mathbf{Q}(t)$ .

Proposition 3.1 and its proof make no reference to the classification of p-adic algebras sketched in Section 2. Define

$$P(\lambda) = \bigcup_{\lambda_A = \lambda} P(A)$$
$$P(n, p^d) = \bigcup_{d_A = d} P(A) .$$

Summing over A with  $\lambda_A = \lambda$  in Proposition 3.1 and using the Krasner-Serre mass formula gives Corollary 3.2 below. Summing over A with  $d_A = d$  in Proposition 3.1 and using the definition of  $M(n, p^d)$  gives Corollary 3.3.

**Corollary 3.2.** For  $\lambda$  a partition of n,

$$\operatorname{vol}(P(\lambda)) \le \frac{1}{p^{n-\ell(\lambda)}}$$

where  $\ell(\lambda)$  denotes the length of  $\lambda$ .

Corollary 3.3. For  $d \in \mathbb{Z}_{>0}$ ,

$$\operatorname{vol}\left(P\left(n,p^{d}\right)\right) \leq \frac{M(n,p^{d})}{p^{d}}$$

On the other hand, one can also prove Corollary 3.2 directly, using neither the Krasner-Serre mass formula, nor Proposition 3.1.

Direct proof of Corollary 3.2. Write  $\lambda = (\lambda_1, \ldots, \lambda_{\ell(\lambda)})$ , with each  $\lambda_i > 0$ . Let  $P(\lambda)_1 \subset \mathbf{F}_p^n$  be the reduction of  $P(\lambda) \subset \mathbf{Z}_p^n$ . For e a positive integer, let  $\mu_e$  be the number of i such that  $\lambda_i = e$ . Very simply,

$$P(\lambda)_1 = \left\{ \prod_e f_e(x)^e \right\}$$

where  $f_e(x) \in \mathbf{F}_p[x]$  is monic of degree  $\mu_e$ . To give an element of  $P(\lambda)_1$  is to give the coefficients of the  $f_e$ . There are  $\sum \mu_e = \ell(\lambda)$  coefficients, and so  $P(\lambda)_1$  is  $p^{\ell(\lambda)}/p^n$  of  $\mathbf{F}_p^n$ .

It would be nice to compute  $Z_A(1/p)$  exactly. To do this it seems necessary to compute all of  $Z_A(t)$ . We have succeeded when n is prime and A is a field; the results in the unramified case U and the totally ramified case R are

$$Z_U(t) = \frac{1 - \frac{1}{p^{n-1}}}{1 - \frac{t^{n(n-1)/2}}{p^{n-1}}} \qquad Z_R(t) = \frac{\left(1 - \frac{1}{p}\right) \left(1 - \frac{t^{(n-1)^2/2}}{p^{n-1}}\right)}{\left(1 - \frac{t^{(n-1)/2}}{p}\right) \left(1 - \frac{t^{n(n-1)/2}}{p^{n-1}}\right)} \ .$$

We have also computed several more difficult  $Z_A(t)$ , sometimes directly, and sometimes making use of the stationary phase formula [D1], Theorem 3.4. The resulting formulas are quite complicated.

## 4 The Search Set

Let K be a degree n algebra over  $\mathbf{Q}$  with absolute discriminant D. With respect to the quadratic form  $T_2$ , one has an orthogonal decomposition  $K = K^0 \oplus \mathbf{Q}$ ,  $K^0$  being the subspace of traceless elements.

Let  $\mathcal{O}$  be the ring of integers in K. Let  $\mathcal{O}'$  be the projection of  $\mathcal{O}$  to  $K^0$ . As a lattice in the Euclidean space  $K^0 \otimes \mathbf{R}$ ,  $\mathcal{O}'$  has covolume  $\sqrt{D/n}$ .

Let  $g_m$  be the smallest real number so that every lattice in Euclidean space  $\mathbf{R}^m$  with covolume V has a non-zero vector of length  $\leq (g_m V^2)^{1/(2m)}$ . The value of  $g_m$  is known ([CS1], Table 1.2) for  $m \leq 8$ .

In the literature one often sees Hermite's constant  $\gamma_m = \sqrt[m]{g_m}$  instead of  $g_m$ . Define

$$r_D = \left(\frac{g_{n-1}D}{n}\right)^{1/(2n-2)}$$

One gets immediately that in  $\mathcal{O}'$  there is a non-zero vector y' of length  $\leq r_D$ . The subalgebra  $\mathbf{Q}(y')$  of K strictly contains  $\mathbf{Q}$ ; so if K is a primitive field,  $\mathbf{Q}(y')$  is automatically all of K.

Henceforth in this paper we take  $n \geq 3$  to avoid trivialities. By replacing y' by -y' one can assume that  $a'_3 \geq 0$  in its characteristic polynomial. As j varies from 0 to n-1, exactly one of y = y' - j/n is in  $\mathcal{O}$ . This element y has characteristic polynomial  $f_y \in P(r_D)$ ; here the search set P(r) is the set of polynomials

$$f(x) = \prod_{i=1}^{n} (x - y_i) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n \in \mathbf{Z}[x]$$

satisfying the two conditions

(i) trace condition:

$$a_1 \in \{0, \dots, n-1\}$$
 and  $a_3 \ge \frac{(n-2)a_1a_2}{n} - \frac{(n-1)(n-2)a_1^3}{3n^2}$ 

(*ii*) length condition:

$$T_2(f) \le \frac{a_1^2}{n} + r^2$$

**Proposition 4.1.** Let K be a degree n algebra over  $\mathbf{Q}$  with absolute discriminant D. Let  $m(K, \Delta)$  be the number of defining polynomials for K in  $P(r_{\Delta})$ .

(i) If K is a primitive field and  $D \leq \Delta$ , then  $m(K, \Delta) \geq 1$ .

(ii) For general K,

$$m(K, \varDelta) \sim \frac{m_n}{|\operatorname{Aut}(K)|} \sqrt{\frac{\varDelta}{D}} \quad with \quad m_n = \frac{\sqrt{g_{n-1}} \ \pi^{(n-1)/2}}{2\left(\frac{n-1}{2}\right)!}$$

as  $\Delta \to \infty$ .

*Proof.* Part (i) is essentially Hunter's theorem, see e.g. [C1], Theorem 6.4.1. It is proved by our discussion above. Our trace condition is a modification of the standard one. We make this modification in order to fully exploit the involution  $y' \mapsto -y'$ , thereby making |P(r)| as small as possible.

For Part (*ii*), let  $\mathcal{O}'_{\Delta,+}$  be the subset of  $\mathcal{O}'$  consisting of elements y' with length  $\leq r_{\Delta}$  and  $a'_{3} \geq 0$ . Let  $\mathcal{O}'_{\mathrm{reg},\Delta,+}$  be the subset of  $\mathcal{O}'_{\Delta,+}$  consisting of regular elements. Then

$$\begin{aligned} |\operatorname{Aut}(K)| \ m(K,\Delta) &= |\mathcal{O}_{\operatorname{reg},\Delta,+}'| \sim |\mathcal{O}_{\Delta,+}'| \sim \frac{(\operatorname{Volume of ball of radius } r_{\Delta})}{2 \ (\operatorname{Covolume of } \mathcal{O}')} \\ &= \frac{(r_{\Delta}\sqrt{\pi})^{n-1}/\left(\frac{n-1}{2}\right)!}{2\sqrt{D/n}} = \frac{\sqrt{g_{n-1}}\pi^{(n-1)/2}}{2\left(\frac{n-1}{2}\right)!} \sqrt{\frac{\Delta}{D}} \\ \Delta \to \infty. \end{aligned}$$

as

Part (ii) relates to the phenomenon that searches tend to find several defining polynomials for each primitive field sought, as well as defining polynomials for non-primitive fields. For  $3 \le n \le 9$  one has

to one decimal place.

## 5 Timing Analysis

To incorporate targeting into the formalism, let S be a finite set of places of  $\mathbf{Q}$  containing  $\infty$ . For  $v \in S$ , let  $A_v$  be a degree n algebra over  $\mathbf{Q}_v$ . Let

$$P(\{A_v\}, r) = \{f(x) \in P(r) : \mathbf{Q}_v[x] / f(x) \cong A_v \text{ for } v \in S\}$$

From Proposition 4.1,  $P(\{A_v\}, r_\Delta)$  contains a defining polynomial for every primitive degree *n* field *K* with absolute discriminant  $D \leq \Delta$  and  $K_v \cong A_v$ ,  $v \in S$ .

## Proposition 5.1.

$$|P(\{A_v\}, r_{\Delta})| \sim \frac{n}{2} \left(\frac{g_{n-1}}{n}\right)^{(n+2)/4} \operatorname{vol}(P^0(A_{\infty}, 1)) \left(\prod_p \operatorname{vol}(P(A_p))\right) \Delta^{(n+2)/4}$$

as  $\Delta \to \infty$ .

Proof. For elements in  $P(\{A_{\infty}\}, r_{\Delta})$  there are *n* possible values of  $a_1$ , each giving asymptotically the same number of polynomials; this accounts for the factor *n*. Those with  $a_1 = 0$  are the intersection of the standard lattice  $\mathbf{Z}^{n-1}$ with the interior of the region  $P^0(A_{\infty}, r_{\Delta})_+$  in  $\mathbf{R}^{n-1}$ . The + indicates the extra condition  $a_3 \geq 0$ , and accounts for the 2 in the denominator. Proposition 1.1 and the definition of  $r_{\Delta}$  account for the factor  $\operatorname{vol}(P^0(A_{\infty}, r_{\Delta})) = (g_{n-1}\Delta/n)^{(n+2)/4}\operatorname{vol}(P^0(A_{\infty}, 1))$ . Finally the ultrametric conditions account for the extra factors  $\operatorname{vol}(P(A_p))$ .

The deeper Propositions 1.2 and 1.3 determine the archimedean volumes for  $n \leq 7$ ; Proposition 3.1 bounds the ultrametric volumes in general.

Proposition 5.1 is an asymptotic formula. However one would expect, and experience shows, that it applies well when  $\Delta$  is simply the product of the discriminants of the  $A_p$ 's. In this restricted context, and summing over *p*-adic algebras with a given discriminant, the formula can be restated as follows. Define

$$C(n, \infty^d) = \frac{n}{2} \left(\frac{g_{n-1}}{n}\right)^{(n+2)/4} \operatorname{vol}\left(P^0(\mathbf{R}^{n-2d} \times \mathbf{C}^d, 1)\right)$$
$$C(n, p^d) = \operatorname{vol}\left(P\left(n, p^d\right)\right) p^d .$$

Then, a Hunter search for all primitive fields of signature  $(n - 2d_{\infty}, d_{\infty})$  and absolute discriminant  $\prod p^{d_p}$  requires inspection of approximately

$$C(n,\infty^{d_{\infty}})\prod_{p}C(n,p^{d_{p}})p^{d_{p}(n-2)/4}$$

polynomials. (Naturally there are no such fields unless  $(-1)^{d_{\infty}} \prod p^{d_p}$  is congruent to 0 or 1 modulo 4. If n = 6, some searches can be replaced by easier searches via sextic twinning [R1].)

In the literature there are several methods which allow one to implement the length inequality and target the local algebra at  $\infty$  with little loss [BFP1],

[SPD1], [O1], [D01]. In principal, *p*-adic bounds on the  $a_i$  giving only the slight loss  $C(n, p^d) \leq M(n, p^d)$  of Corollary 3.3 are easy to describe since they amount to collections of congruences on the  $a_i$ . For example, in the tame case one can follow the direct proof of Corollary 3.2. In practice, for large *p* and/or *n* it can become unwieldy to implement sharp *p*-adic bounds as well.

Table 2 below gives what we call local difficulty ratings, namely the numbers  $\log_{10}(C(n,\infty^d))$  and  $\log_{10}(M(n,p^d)p^{d(n-2)/4})$ . All entries are rounded to the nearest tenth. The rows labelled *All* give totals for all values of *d*.

| d   | $\infty$ | 2        | 3   | 5   | 7   | 11  | 13    | $\infty$ | 2        | 3   | 5   | 7    | 11  | 13  |
|-----|----------|----------|-----|-----|-----|-----|-------|----------|----------|-----|-----|------|-----|-----|
| 0   | -3.1     | Quartics |     |     |     |     |       | -5.3     | Quintics |     |     |      |     |     |
| 1   | -1.9     | _        | 0.2 | 0.3 | 0.4 | 0.5 | 0.6   | -3.5     | _        | 0.4 | 0.5 | 0.6  | 0.8 | 0.8 |
| 2   | -2.2     | 0.6      | 0.5 | 1.0 | 1.1 | 1.3 | 1.4   | -3.1     | 0.8      | 0.7 | 1.3 | 1.6  | 1.9 | 2.0 |
| 3   |          | 0.8      | 1.2 | 1.0 | 1.3 | 1.6 | 1.7   |          | 1.0      | 1.6 | 1.9 | 2.2  | 2.6 | 2.8 |
| 4   |          | 0.9      | 1.3 |     |     |     |       |          | 1.5      | 2.1 | —   | 2.5  | 3.1 | 3.3 |
| 5   |          | 1.1      | 1.7 |     |     |     |       |          | 1.7      | 2.5 | 3.2 |      |     |     |
| 6   |          | 1.7      |     |     |     |     |       |          | 2.1      | 2.6 | 3.7 |      |     |     |
| 7   |          | —        |     |     |     |     |       |          | —        |     | 4.3 |      |     |     |
| 8   |          | 1.8      |     |     |     |     |       |          | 2.4      |     | 4.8 |      |     |     |
| 9   |          | 2.0      |     |     |     |     |       |          | 2.6      |     | 5.4 |      |     |     |
| 10  |          | 2.1      |     |     |     |     |       |          | 2.9      |     |     |      |     |     |
| 11  |          | 2.6      |     |     |     |     |       |          | 3.4      |     |     |      |     |     |
| All | -1.7     | 2.9      | 1.9 | 1.4 | 1.5 | 1.8 | 1.9   | -3.0     | 3.6      | 3.0 |     |      | 3.3 | 3.5 |
| 0   | -8.1     | Sextics  |     |     |     |     | -11.4 |          | Septics  |     |     |      |     |     |
| 1   | -5.9     | _        | 0.5 | 0.7 | 0.8 | 1.0 | 1.1   | -8.7     | _        | 0.6 | 0.9 | 1.1  | 1.3 | 1.4 |
| 2   | -5.0     | 0.9      | 1.0 | 1.7 | 2.0 | 2.4 | 2.5   | -7.3     | 1.1      | 1.2 | 2.0 | 2.4  | 2.9 | 3.1 |
| 3   | -5.5     | 1.2      | 2.0 | 2.6 | 3.0 | 3.6 | 3.8   | -7.2     | 1.4      | 2.4 | 3.1 | 3.6  | 4.4 | 4.7 |
| 4   |          | 1.9      | 2.7 | 3.1 | 3.9 | 4.6 | 4.9   |          | 2.2      | 3.2 | 4.0 | 4.8  | 5.8 | 6.2 |
| 5   |          | 2.1      | 3.1 | 4.2 | 4.2 | 5.2 | 5.6   |          | 2.5      | 3.9 | 5.1 | 5.8  | 7.0 | 7.4 |
| 6   |          | 2.8      | 3.8 | 4.8 |     |     |       |          | 3.4      | 4.7 | 6.2 | _    | 7.8 | 8.4 |
| 7   |          | 2.7      | 4.1 | 5.5 |     |     |       |          | 3.5      | 5.2 | 7.0 | 8.2  |     |     |
| 8   |          | 3.5      | 4.8 | 6.2 |     |     |       |          | 4.3      | 5.9 | 7.9 | 9.2  |     |     |
| 9   |          | 3.9      | 5.4 | 7.0 |     |     |       |          | 4.6      | 6.4 | 8.8 | 10.3 |     |     |
| 10  |          | 4.1      | 5.9 |     |     |     |       |          | 5.0      | 7.1 | 9.4 | 11.3 |     |     |
| 11  |          | 4.8      | 6.2 |     |     |     |       |          | 5.6      | 7.5 |     | 12.4 |     |     |
| 12  |          | 4.7      |     |     |     |     |       |          | 5.7      |     |     | 13.5 |     |     |
| 13  |          | 5.1      |     |     |     |     |       |          | 6.3      |     |     | 14.6 |     |     |
| 14  |          | 5.4      |     |     |     |     |       |          | 6.5      |     |     |      |     |     |
| All | -4.8     | 5.7      | 6.4 | 7.1 | 4.4 | 5.3 | 5.7   | -6.9     | 6.8      | 7.7 | 9.5 | 14.6 | 7.9 | 8.4 |

 Table 2. Local Difficulty Ratings

The translation from search volumes to search times requires that one incorporate a number of practical concerns as well. All told, one can expect that a degree n search with difficulty x will take longer than a degree n-1 search with difficulty x. For our current programs, in degrees 5 and 6 on a medium speed personal computer, the translation from volumes to times goes as follows.

For quintics, searches with difficulty rating x take us about  $10^{x-7.9}$  days. For example, the search for all  $2^{11}3^{6}5^{9}$  quintics has difficulty rating -3.0 + 3.4 + 2.6 + 5.4 = 8.4 and took  $10^{0.5} \approx 3$  days.

For sextics, searches with difficulty rating x take us about  $10^{x-7.3}$  days. For example, the search for all primitive  $2^{14}5^9$  sextics has difficulty rating -4.8 + 5.4 + 7.0 = 7.6 and took around  $10^{0.3} \approx 2$  days.

In [JR1] we found all sextic fields ramified within  $S = \{\infty, 2, 3\}$ . Table 2 shows that a few other  $\{\infty, p, q\}$  are easier, while harder cases like  $\{\infty, 3, 5\}$  are feasible too.

#### References

- [BFP1] Buchmann, J., Ford, D., and Pohst, M., Enumeration of quartic fields of small discriminant, Math. Comp. 61 (1993) 873–879.
- [C1] Cohen, H.: A Course in Computational Algebraic Number Theory, GTM 138 Springer Verlag, 1995.
- [CS1] Conway, J. and Sloane, N.: Sphere Packings, Lattices, and Groups, Springer Verlag, 1988.
- [D1] Denef, J.: Report on Igusa's local zeta function, Séminaire Bourbaki 741, Astérisque 201-202-203, 359–386.
- [DO1] Diaz y Diaz, F. and Olivier, M., Imprimitive ninth-degree number fields with small discriminants, Math. Comp. 64 (1995) 305–321.
- [J1] Jones, J.: Tables of number fields with prescribed ramification, a WWW site, http://math.la.asu.edu/~jj/numberfields
- [JR1] Jones, J. and Roberts, D.: Sextic number fields with discriminant  $-{}^{j}2^{a}3^{b}$ , to appear in the Proceedings of the Fifth Conference of the Canadian Number Theory Association.
- [M1] Mehta, M.: Random Matrices, 2<sup>nd</sup> edition, Academic Press, 1991.
- [O1] Olivier, M., The computation of sextic fields with a cubic subfield and no quadratic subfield, Math. Comp. 58 (1992) 419–432.
- [R1] Roberts, D.: Twin sextic algebras, to appear in Rocky Mountain J. Math.
- [R2] Roberts, D.: Low degree p-adic fields, in preparation.
- [S1] Serre, J.-P.: Une "formule de masse" pour les extensions totalement ramifiées de degré donné d'un corps local, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 22, A1031-A1036.
- [SPD1] Schwarz, A., Pohst, M., and Diaz y Diaz, F.: A table of quintic number fields, Math. Comp. 63 (1994) 361–376.