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Why make tables of elliptic curves?

Since the early days of using computers in number theory,
computations and tables have played an important part in
experimentation, for the purpose of formulating, proving (and
disproving) conjectures. This is particularly true in the study of
elliptic curves.

Originally the tables were relatively hard to use (let alone to
make) as they were available in printed form, or on microfiche!
Example: the Antwerp IV tables (1976). Now life is much
easier! Packages such as SAGE, MAGMA and PARI/GP contain
elliptic curve databases (sometimes as optional add-ons as
they are large); the internet makes accessing even “printed”
tables much easier; and we have the LMFDB.
These tables / databases are for elliptic curves over Q only!
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Early tables over number fields

What tables exist for elliptic curves over number fields
(other than Q)?

My PhD thesis (1981) contains 184 elliptic curves (in 138
isogeny classes) defined over five imaginary quadratic fields:

Field norm ≤ #classes #curves

Q(
√
−1) 500 40 + 2 = 42 55 + 2 = 57

Q(
√
−2) 300 36 + 4 = 40 51 + 4 = 55

Q(
√
−3) 500 30 + 2 = 32 33 + 2 = 35

Q(
√
−7) 200 18 + 1 = 19 30 + 1 = 31

Q(
√
−11) 200 14 + 3 = 17 15 + 3 = 18

These appeared in my first paper (Compositio 1984) with some
additional (previously “missing”) curves added in 1987.



Early tables over number fields

What tables exist for elliptic curves over number fields
(other than Q)?
My PhD thesis (1981) contains 184 elliptic curves (in 138
isogeny classes) defined over five imaginary quadratic fields:

Field norm ≤ #classes #curves

Q(
√
−1) 500 40 + 2 = 42 55 + 2 = 57

Q(
√
−2) 300 36 + 4 = 40 51 + 4 = 55

Q(
√
−3) 500 30 + 2 = 32 33 + 2 = 35

Q(
√
−7) 200 18 + 1 = 19 30 + 1 = 31

Q(
√
−11) 200 14 + 3 = 17 15 + 3 = 18

These appeared in my first paper (Compositio 1984) with some
additional (previously “missing”) curves added in 1987.



Why these fields and ranges?

For these five fields I had developed a theory of modular
symbols and hence had computed, for levels n whose norm is
bounded as above, all rational cuspidal newforms of weight 2
for the Bianchi congruence subgroups Γ0(n).

This explains the small norm bound! The computations were
mostly done in 1980-81. The elliptic curves were mostly found
by a simple search, and I could detect isogenies but not
compute them, so these tables are not complete under isogeny.

The combination of
1 modular form computations: which curves do we expect?

and
2 targeted searching: which curves can we find?

will be an underlying theme of this talk.
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Which curve models?
How do we specify an elliptic curve defined over a number
field K? By a Weierstrass equation

Y2 + a1XY + a3Y = X3 + a2X2 + a4X + a6

or [a1, a2, a3, a4, a6] for short.

We can insist on integral models
(with all aj ∈ OK) and if the class number hK = 1 on global
minimal models (minimal at all primes of K).

We still have to deal with scaling by units (aj 7→ ujaj), not a big
issue for imaginary quadratic K, and by coordinate shifts we
can assume that a1, a2, a3 are reduced modulo 2, 3, 2
(respectively).

Over Q this gives unique “reduced minimal models”, but not
over any other number fields except for the 7 imaginary
quadratic fields K with hK = 1 and O∗

K = {±1}.
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How do we order curves?

There are several possibilities:

By height: say by max{|a1|, |a2|, |a3|, |a4|, |a6|}, or
max{|c4|, |c6|}, or max{|c4|3, |c6|2}: that is, by some suitably
weighted height of the coefficient vector;
By discriminant norm N(∆E);
By conductor norm N(n).

I will normally go for the last possibility, listing curves by
conductor with conductors in order of norm. (Note that the
number of isomorphism classes of curves with fixed conductor
is finite.)

Otherwise we might fix a set of primes S and list all curves with
good reduction outside S, again a finite set.
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Enumeration methods

This is the simplest approach:
For each triple (a1, a2, a3) ∈ O3

K reduced modulo (2, 3, 2)
and for all (a4, a6) ∈ O2

K with coefficients lying in a box (with
respect to a fixed integral basis for OK), write down every
equation!

Throw away those not wanted (e.g. conductor norm too
large) and keep the rest.
Sort by conductor, isogeny class and isomorphism class.
Compute curves isogenous to each found and kept.

This is slow! It is basically what I did in 1981 (with a small box!).
Over Q an efficient version of this was used to create the
Stein-Watkins database.
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Sieved enumeration

A refinement of the enumeration method is to use sieving. This
only makes sense if we know in advance something about the
curves we expect to find (their conductors and L-functions).

Where could such knowledge come from?

Modularity!

So we will come back to this after talking about modularity.
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Modularity I: over Q

Over Q, while the first tables of elliptic curves were obtained by
plain enumeration as described above, this was soon
augmented by Birch’s student Tingley. In his 1975 thesis,
Tingley used modular symbols to find elliptic curves of
conductors up to about 300.

This relied on the Eichler-Shimura construction: to every
rational newform f ∈ S2(Γ0(N)) is attached an elliptic curve Ef
defined over Q and of conductor N [Carayol et al ].
The construction can be made very explicit, using the periods
of 2πif (z)dz to compute the period lattice of Ef , and hence its
coefficients, numerically. I will not talk about this today!
Except to stress that there is no such construction for any
number field other than Q.
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Modularity over Q (continued)

Moreover: every elliptic curve over Q is modular [Wiles et al ],
i.e. is isogenous to one of the Ef .

So if we use modularity to compute elliptic curves over Q, we
will obtain complete tables for each conductor N.

This was not known when the tables were first published
(Antwerp IV 1976 or AMEC 1st edn. 1992), but that did not stop
the tables being welcomed, and useful.
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Modularity over quadratic fields

As we will see in Samir’s talk, all elliptic curves over real
quadratic fields are modular [Siksek et al ], so over such fields
we have a hope of computing tables which are known to be
complete.

See Alyson’s talk!
Computing the curves is still not as “easy” as over Q. . .

This brings us back to imaginary quadratic fields.
Here, a lot less is known; and also, less is true!



Modularity over quadratic fields

As we will see in Samir’s talk, all elliptic curves over real
quadratic fields are modular [Siksek et al ], so over such fields
we have a hope of computing tables which are known to be
complete. See Alyson’s talk!

Computing the curves is still not as “easy” as over Q. . .

This brings us back to imaginary quadratic fields.
Here, a lot less is known; and also, less is true!



Modularity over quadratic fields

As we will see in Samir’s talk, all elliptic curves over real
quadratic fields are modular [Siksek et al ], so over such fields
we have a hope of computing tables which are known to be
complete. See Alyson’s talk!
Computing the curves is still not as “easy” as over Q. . .

This brings us back to imaginary quadratic fields.
Here, a lot less is known; and also, less is true!



Modularity over quadratic fields

As we will see in Samir’s talk, all elliptic curves over real
quadratic fields are modular [Siksek et al ], so over such fields
we have a hope of computing tables which are known to be
complete. See Alyson’s talk!
Computing the curves is still not as “easy” as over Q. . .

This brings us back to imaginary quadratic fields.

Here, a lot less is known; and also, less is true!



Modularity over quadratic fields

As we will see in Samir’s talk, all elliptic curves over real
quadratic fields are modular [Siksek et al ], so over such fields
we have a hope of computing tables which are known to be
complete. See Alyson’s talk!
Computing the curves is still not as “easy” as over Q. . .

This brings us back to imaginary quadratic fields.
Here, a lot less is known; and also, less is true!



Modularity over imaginary quadratic fields
Let K be imaginary quadratic. For each “level” n C OK we
define the congruence subgroup Γ0(n) of the Bianchi
groups GL2(OK) in the normal way.

There is a finite-dimensional complex vector space S2(n) of
“cusp forms of weight 2 for Γ0(n)”. These are functions on
hyperbolic 3-space H3 with values in C3, associated to
harmonic differentials on the compact orbifold Γ0(n)\H∗

3, with
Hecke action,. . . . . . but can be explicitly computed using a
generalization of modular symbols!
I will omit all details of this today.

This has been implemented for a variety of imaginary quadratic
fields by me and my students, and there is a version (based on
some different ideas) by Dan Yasaki in Magma. Today I will give
you data for the first five fields only, for which I have most
well-developed and efficient code (at
https://github.com/JohnCremona/bianchi-progs).

https://github.com/JohnCremona/bianchi-progs
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some different ideas) by Dan Yasaki in Magma. Today I will give
you data for the first five fields only, for which I have most
well-developed and efficient code (at
https://github.com/JohnCremona/bianchi-progs).

https://github.com/JohnCremona/bianchi-progs


Imaginary quadratic newforms
In 2013 I extended my old (1981) tables of rational newforms
over the first five imaginary quadratic fields to cover all levels of
norm ≤ 104 (and going further would not be hard):

Field norm ≤ #rational cuspidal newforms

Q(
√
−1) 10000 3157

Q(
√
−2) 10000 6236

Q(
√
−3) 10000 2210

Q(
√
−7) 10000 5923

Q(
√
−11) 10000 5203

I also recruited a final year undergraduate, Warren Moore, who
is doing his Masters dissertation on finding elliptic curves to
match all these, or as many as he can, using whatever methods
we can think of.

Here is how far he has got to (as of a few days ago):
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Imaginary quadratic progress

Field norm ≤ #newforms #classes #curves #missing

Q(
√
−1) 10000 3157 2993 11254 164

Q(
√
−2) 10000 6236 5382 11755 854

Q(
√
−3) 10000 2210 2020 5452 188!

Q(
√
−7) 10000 5923 5259 12267 664

Q(
√
−11) 10000 5203 4139 8444 1064

Over K = Q(
√
−3) there are 2210 rational newforms but

two of these, of levels (75) and (81), are base changes of
modular abelian surfaces over Q of levels 225 and 243,
which do not split over K.
These numbers do not include curves with CM by an order
in K.
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Sieved enumeration using newform data
Each newform F at level n has an L-function L(F, s) which
“looks like” the (degree 4) L-function of an elliptic curve over K,
with Euler product, analytic continuation to C, functional
equation. This is completely determined by knowing (1) the
conductor n and (2) the Hecke eigenvalues ap at primes p.

So in looking for the curves we can use a sieve as follows: take
a small number r of primes pi of degree 1, and do
pre-computations so that it is very quick to compute the map

[a1, a2, a3, a4, a6] ∈ O5
K 7→

∏
i

F5
pi
7→ (ap1 , . . . , apr ) ∈ Zr

giving the traces of Frobenius of the elliptic curve
[a1, a2, a3, a4, a6] at each pi. Also, read in the lists of (api) which
we expect to find. Now when we loop over equations in a box
we can very quickly check whether it is likely to be one which
we are looking for.
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Other tricks

apply quadratic twists to existing curves
work with |api | to find twists with the sieve
recognise base-change forms and use curves /Q
use Chinese remaindering to target hard-to-find curves in a
larger box



Exceptions I

Over imaginary quadratic fields K, we do not expect an exact
bijection between (a) rational cuspidal newforms of weight 2 for
Γ0(n) over K and (b) isogeny classes of elliptic curves E of
conductor n defined over K! There are exceptions on both
sides:

If E has CM by an order in K then E is a twist of a curve
defined over Q which is of course modular; but the
base-change from Q to K of the cusp form over Q is not
cuspidal!

This can only happen when hK = 1.

For example the elliptic curve Y2 = X3 − X (32a1) has j = 1728
and conductor n = (64) over Q(

√
−1), but S2(n) is trivial.
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Exceptions II

If f ∈ S2(N) over Q is quadratic and with “extra twist”
by K = Q(

√
−d): this means that the coefficients of f lie in

a (necessarily real) quadratic field Kf = Q(
√

e) and

f ⊗ χ = f σ

where χ is the quadratic character associated to K/Q and
σ generates Gal(Kf /Q). Attached to f is an abelian surface
Af such that

End(Af )⊗Q ∼=
(
−d, e
Q

)
which may or may not split. If it does not then Af is
absolutely simple. But the base-change of f from Q to K is
a cusp form F with rational coefficients, and this F will
then not have an associated elliptic curve.



Exceptions II example

In S2(35) (over Q) there is a newform f with

a2 =
√

6, a5 = −
√

6, a7 = 2, a11 =
√

6;

in general, ap ∈ Z for p ≡ 1 and ap/
√

6 ∈ Z for p ≡ 2 (mod 3).

The base change F of f to Q(
√
−3) has level (81) and rational

ap: if p ≡ 1 (mod 3) then (p) = pp and ap = ap = ap ∈ Z,
while if p ≡ 2 (mod 3) then (p) = p and ap = a2

p − 2p ∈ Z.

But the quaternion algebra
(
−3,6
Q

)
is not split so Af is simple

(over Q(
√
−3) and absolutely): there is no elliptic curve E over

Q(
√
−3) with conductor (81) such that L(E, s) = L(F, s).

This phenomenon cannot happen for real quadratic fields!
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Filling the gaps

We do not find all elliptic curves to match newforms using
sieved enumeration, since some have coefficients too large
(“outside the box”!), even after twisting and other tricks have
been tried.

Can we construct the sought elliptic curves using the periods of
the newform F? Over imaginary quadratic fields: NO!

Another method is often useful: to make explicit Shafarevich’s
theorem that the number of elliptic curves of any given
conductor is finite, or more generally, the number of elliptic
curves defined over a fixed number field K with good reduction
outside a given finite set S of primes of K.

This is the last method I will discuss today.
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Curves with fixed conductor
(or set of primes of bad reduction)

If S is a finite set of primes of the number field K there are only
finitely many (isomorphism classes of elliptic curves defined
over K with good reduction outside S.
Taking S = {p : p | n} we can restrict to curves of conductor
exactly n.

This can be made explicit. There are two steps:
1 find all possible j-invariants;
2 find all E with each j.

The second step is quite straightforward: assuming that
j 6= 0, 1728 and that S contains all primes dividing 6, the curves
form a complete set of quadratic twists by elements of K(S, 2).
For details see Cremona-Lingham 2007.
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Finding the j-invariants for given S: I
[Continue to assume that p | 6 =⇒ p ∈ S and j 6= 0, 1728.]
The j-invariants which occur are those such that

j2(j− 1728)3 ∈ K(S, 6)12.

Here,

K(S,m) = {x | ordp(x) ≡ 0 (mod m)∀p /∈ S}/K∗m 6 K∗/K∗m

and
K(S,m)mn = im(K(S,mn)→ K(S,m)).

If w = j2(j− 1728)3 ∈ K(S, 6)12, take u ∈ K∗ such that
(3u)6w ∈ K(S, 12); then

Y2 = X3 − 3u2j(j− 1728)X − 2u3j(j− 1728)2

has good reduction outside S, and all such curves are twists of
this by elements of K(S, 2).
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Finding the j-invariants for given S: II

In Cremona-Lingham, one method for finding such j is
described: j = x3/w where (x, y) is an S-integral point on
Y2 = X3 − 1728w with w ∈ K(S, 6)12.

I implemented this in Magma (and in Sage over Q), but:
− the problem in practice is that finding all S-integral points on
elliptic curves is not easy (and not implemented in general); my
Magma code just searches for S-integral points.

+ The code has been used to find some of the “missing
curves”, over both real and imaginary quadratic fields (and has
also been used for some higher degree fields).

++ A new idea is now under development. . .
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Finding the j-invariants for given S: III

After I gave a talk about this at MSRI in 2010, Elkies had an
idea: instead of finding the j-invariants directly, find the
λ-invariants. This is now joint work with Angelos Koutsianas.

Recall that j = 256 (λ2−λ+1)3

λ2(λ−1)2 . This is the covering map from X(2)

to X(1), both curves over Q of genus 0.

If j is an S-integer then λ is an S-unit. And since j(λ) = j(1− λ)
we also have that 1− λ is an S-unit. So we can find λ, and
hence j, by solving the S-unit equation λ+ µ = 1.

There are now two sub-problems:
1 find all possible 2-division fields L = K(λ);
2 solve the S-unit equation in each L.
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λ-invariants. This is now joint work with Angelos Koutsianas.

Recall that j = 256 (λ2−λ+1)3

λ2(λ−1)2 . This is the covering map from X(2)

to X(1), both curves over Q of genus 0.

If j is an S-integer then λ is an S-unit. And since j(λ) = j(1− λ)
we also have that 1− λ is an S-unit. So we can find λ, and
hence j, by solving the S-unit equation λ+ µ = 1.

There are now two sub-problems:
1 find all possible 2-division fields L = K(λ);
2 solve the S-unit equation in each L.



Finding the λ-invariants for given S

The first problem has been solved, and implemented; we use
Kummer Theory to find all extensions L/K which are Galois,
with group either C1, C2, C3 or S3.

The second problem (solving S-unit equations over number
fields) has been worked on by many people for years, but there
are no existing implementations. Angelos has working code for
this, but we are trying to make it faster, since it can be slow
when the number of primes (of L dividing the primes of K in S)
is large. We hope to make use of the fact that our S-unit
equations are not random but are associated with the elliptic
curve problem to make this more efficient.

Work in progress!
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