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Motivation and Background
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Exciting Times for Elliptic Curves

= Computations

O Antwerp tables, all curves up to conductor 200, tables of curves with
bad reduction only at 2 and 3

0 For the past 20+ years Cremona has been building tables of elliptic
curves over Q.

0 Stein-Watkins tables, lots of curves with small-ish coefficients

0 Stein-Miller tables, verify full BSD for curves < 5000 (for all but 11
curves)
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Why Q(v/5)?

Let F = Q(v/5) and ¢ = 11/5,
® F is a totally real number field with ring of integers O = Z[)].

= Ordering by discriminants Q(1/5) is the next totally real number
field after Q.

F has narrow class number one.
The unit group is {£1} x ().
F has 31 CM j-invariants (Q only has 13)

Xo(17) has rank 1 over F, so lots of (infinitely many) isogenies of
degree 17 over F.
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Tables
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CM Elliptic Curves over Q(+/5)

Theorem

The field Q(\/5) has 31 distinct Q-isomorphism classes of CM elliptic
curves, more than any other quadratic field.

Let Hp be the minimal polynomial of the j-invariant of any elliptic
curve with CM by the order Op. Excluding degree 1 Hp:

Field D so that Hp has roots in field
Q(V?2) —24,-32, —64, —88
Q(V3) —36, —48

Q(v5) —15,-20, 35, —40, —60, —75, —100, —115, —235
Q(v6) ~72
Q(V7) —112
Q(v/13) —52,—91, —403
Q(V17) —51,—187
Q(v/21) —147

6/ 42



These tables and much of the code were produced at a summer REU
at UW last summer. The tables (and a little code) can be found at

https://github.com/williamstein/sqrtb

Quick remark: Let O‘(\/g) =5 If E/Q(\/E) then E? is another
curve over Q(v/5) and both are in our tables!
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Curve Counts up to Rank 2

rank Ftisog Ftisom smallest Norm(n)

0 745 2174 31
1 667 1192 199
2 2 2 1831

total 1414 3368 —

8/ 42



-
Rank Records

The following are the smallest known curves of given ranks over

Q(V).

rank Norm(n) equation person

0 3L(prime) Lo+ 1090 Dembélé
1 199(prime) [0,—p —1,1,¢,0] Dembélé
2 1831(prime) [0, —p,1,—p — 1,29 + 1] Dembélé
3 26,569 = 1632 [0,0,1,-2,1] Elkies

4 1,209,079(prime) [1,—1,0,—8 — 12¢,19 + 30¢] Elkies

5 64,004, 329 [0,-1,1,—-9 — 20, 15 + 4¢)] Elkies
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Number of Isogeny Classes of a Given Size

bound

size:

1 2 3 4 6 8 10

total

199
1831

2 21 3 20 8 9
498 530 36 243 66 38

1
2

64
1414

Due to Kenku, over QQ isogeny classes only have up to 8 curves.
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Isogeny Degrees

degree #isog H#isom
None 498 498

2 652 2298
3 289 950
5 65 158
7 19 38

Note: These are the isogeny degrees of curves found in our tables.
For example, 17 isogenies will occur, we just haven't gone far enough
to get examples.
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Torsion Subgroups: Q(v/5) vs. Q

structure #isom over Q(v/5) #isom over Q
1 796 3603
Z/2Z 1453 4580
7/3Z 202 523
7)AZ 243 481
7.)27.% 7.2Z 312 726
7./5Z 56 54
/67 183 208
777 13 11
Z/8Z 21 16
7.)2 & 7.AZ 51 60
7.)97 6 4
7/10Z 12 8
7127, 6 2
7.)27 & 7./61 11 6
7,157, 1 0
7.)2 & 7,/87.2 2 1
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Finding Elliptic Curves attached to Hilbert Modular Forms
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Strategies for Finding Elliptic Curves attached to
HMF's

As in Cremona’s tables, we have (at the time we assumed) modularity:

Theorem
Siksek et al. For elliptic curves over real quadratic number fields,
there is a bijection

{L(E,s) : E/Q(V/5) with conductor n} —

{L(f,s) : newform f € S 2)(M)}.

We will also assume we can quickly compute ap(f)'s for
f € S2,2)(MQ)).
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Naive Enumeration

1. Compute all ay(f) up to a large bound N(p) < B for all rational
newforms forms f € S(; 5)(M; Q). Pick B large enough that the
ap(f) uniquely determine f.

2. Systematically enumerate all curves
E:y?>=x3+ax+b,

compute ap(E), and compare with rational newforms. If we find a
match, compute the conductor.
This is deterministic and terminates, but ridiculously slow.

Why bad? Ef could have large coefficients and relatively small
conductor.
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Sieved Enumeration

For several primes p, find all curves mod p with a given a,. In other
words, find curves E such that #E(Of/p) = N(p) + 1 — ay.

Then use the Chinese Remainder Theorem to lift to a curve over Of
with the given ap's.

Again, if E has large coefficients, it will not be found quickly. In
practice, this works well if the number of primes is optimally chosen.
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Torsion Families
The following two theorems we can refine our search space:
Theorem

(Kamienny-Najman) The following is a complete list of torsion
structures for elliptic curves over Q(\/5):

7/ mZ, 1<m<10,m=12
Z]2L®Z/2mZ, 1< m<4
Z/15Z.

Moreover, there is a unique elliptic curve with 15-torsion.

Theorem

Let ¢ be a prime and E an elliptic curve over Q(v/5). Then
U#E'(Q(V5))tor for some elliptic curve E' in the isogeny class of E if
and only if {|N(p) + 1 — a, for all odd primes p at which E has good

reduction.
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Torsion Families

® We use the ay, to decide if it is likely some elliptic curve in the
isogeny class of Ef has an F-rational £ torsion point.

m Search over ¢ torsion families.

Example: This is how we found
y2+ oy = x3 + (27¢ — 43)x + (—80¢p + 128)

with norm conductor 145 and torsion subgroup Z/7Z.
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Congruence Families

Tom Fisher has explicit families so that once you know E’, you can
twist to find other curves E so that E'[(] = E[/].
Example: We had already found

E':y? + (p+ 1)y = x>+ (¢ — 1)x* + (—2¢)x

with norm conductor 369. We found E[7] & E’[7] and used formulas
to write down

E:y*4oxy = x34(p—1)x°
+(—257364¢ — 159063)x + (—75257037¢ — 46511406)

with norm conductor 1476.
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Twisting

If E: y? = x3 + ax + b has conductor n and d € Of is square-free
and coprime to n, then E9 : dy? = x3 + ax + b is the twist of E by d
and the conductor of E9 is divisible by d?n.

To find more curves, just twist by d in some range. Specifically, d so

that N(d) < \/B/C where B is the bound on the size of conductors
and C is the conductor of E.
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Elliptic Curves with Good Reduction Outside S

We used Magma's implementation of Cremona and Lingham's
algorithm for finding elliptic curves with good reduction outside a set
of primes S.

Example:

V24 (o4 1xy +y = x> = x2+ (=19 — 39)x + (—143p — 4)

with norm conductor 1331.
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Special values of twisted L-series

This method is due to Dembélé. It uses special values of L-functions
to guess the periods of a given curve E. All it takes as input are the
level 91 and the L-series (i.e., a large number of a,'s.)
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Using L=series to find modular elliptic curves
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Modularity over Q(+/5)

Let f € 55(MN) with Fourier coefficients ayp, then the L-series of f is

L5y = 3 2nld)

neOfp N(m)s

For p /O, ap(E) = N(p) + 1 — #E(F, and

HEo =l <1 B 7\7((p§2>_1 1l (1 - 7\7((52 + N(P)12s—1>_1'

pIN piM

Then there exists an elliptic curve Ef such that L(Ef,s) = L(f,s).
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Mixed Periods

Let 01,02 be the real embeddings of F. For each E, we get two
embeddings into the complex numbers, so two period lattices.

Let QE be the smallest positive real period corresponding to o1, Qp—
is similarly the smallest imaginary period. Let QE,QE be similarly for

09o.
Mixed Periods:
QE: Qﬂl% QJE“: = QEQE
Q" =Q¢ Q Q= QEQE
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Recovering a Curve from Mixed Periods:

From mixed periods, we have a few choices for the j-invariant of E:

01(/(E)) = j(m1(E) or j(r2(E) and 02(j(E)) = j(1(E) or j(r2(E)

where
Q-t Q-t
TI(E) = EEE'T T2(E) = % 1+ Omega'*,:-'+
— QJr* — Q+7
m(E) = of n(E)y=3(1+ Coread

Assuming we know the discriminant A, we can find the elliptic curve.
Note: we have to guess at A and then try to recognize cs, s
invariants algebraically.
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Twisted L-functions

Given f and a primitive quadratic character x : (Og/p)* — %1, we
can construct the twisted L-function:

L(f,x,s) = > X am(f)
neOr

where m is a totally positive generator of m.
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Oda’s Conjecture

Let s,s" € {+,—} = {£1} and pick x so that x(¢) = s’ and
X(1—¢)=s. Let

)= Y. xl(@)exp(2niTr(a/mV5))

a (mod p)

be the Gauss sum and let ¢, be some integer.

Conjecture (Oda, reformulated by Dembélé)

Using the above notation:

Q5 = ¢ 7(XV)L(E, x, 1)V5.
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Computing Mixed Periods

= Compute QZ—’S/ = ¢, T(X)L(E, x, 1)V/5 for several characters.
= Try to recognize quotients of CCJ/— as rational numbers for for

X
several characters \'.

® Use a good guess to try and construct E:

Qs,s’

-1
E.guess = TOOL(E, X, 1)V5 (Icm{numerator%,i =1,2, })
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Slow, but did the job

= Need to make a large number of guesses
® Must compute many Hecke eigenvalues, i.e., slow.

= |t was what finally filled out the tables!
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Isogeny Classes of Elliptic Curves over Q(v/5)
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Enumerating the Elliptic Curves in an Isogeny Class

Over Q this relies on:

® Mazur's theorem bounds the degree of the isogeny over QQ to less
than 163.

= Vélu's formulas allow us to enumerate all p-isogenies (if any)

Over a number field F Larson-Vaintrob show there is a computable

constant Cg which bounds the degree, but in general we do not have

Mazur's theorem. Using Billerey (2011) we don't need it.

Over Q(v/5):

= Using Billerey, we can compute a superset S of the prime degrees
of isogenies E — E’.

m Using Velu, for each £ € S we can find all ¢ : E — E’ of degree /.

End result: We were able to enumerate all isomorphism classes of

elliptic curves isogenous to the elliptic curves found above.
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Computing Hilbert Modular Forms
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Computing Hilbert Modular Forms

We need lots of Hecke Eigenvalues to compute the L-functions from
Dembélé’s algorithm.

= The algorithm is from Lassina Dembélé’s thesis.
® Generalizes the method of Brandt matrices.

® Dembélé’s speed up: Computing right ideal classes is the same as
computing P1(Of /n).
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Dembélé’s Algorithm

Let F = Q(+/5) , B = F[i,j, k] be the Hamilton quaternion algebra
over F and the icosian ring R a maximal order of B:
R = Or[3(1 = @i+ j), 5(=5i +¢j), 3(0i = @i+ k), 3(i + ) — k)]

Eichler-Shimura +Jaquet-Langlangs correspondence:

S2.2)(9) = SE(M).
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Dembélé’s Algorithm

= Computing SB(M) as the vector space C[R* \ PL(Or/N)]:
View P1(Of /M) as column vectors < Z

For p|M, B® F, = My(F,) - induces left action of R* on P}(Of /M)
Mod out by R*.

Get C-vector space C[R* \ P}(Op/M)]!

= For p /M, left action is Ty([x]) = >-[ax], [a] € R/R* with
Neea([0]) = mp

O

O 0o
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Dembélé’s Algorithm

What makes it fast:

Instead of changing Eichler orders of level 2, change P(Of/N)
Issue: Need tens of thousands of P1(Of/N).

Keys for computing P*(Og /M) quickly:

= Write in terms of prime powers 9t = [[/Z; p®

® Fix the largest size of p;¥ and m.

® Hash out exactly what happens to primes p € Z in each case
(inert, split, ramified.)
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Some Code:

https://github.com/williamstein/psage
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https://github.com/williamstein/psage
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Future Work
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Ranks up to rank 3

At the MRC in June, 2012, we started working on verifying
(conjecturally) that Elkie's curve is the first curve over Q(v/5) of rank
3.

How:

= Compute dimension one subspaces of Hilbert modular forms with
rational ap, use sparse linear algebra to make this fast.
Important: we don't need to find the curves.

® From a, compute derivatives of L-functions.
https://github.com/williamstein/mrc-2012
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Future Work

1. Currently working on rank 3, rank 47
2. Stein-Watkins type tables
3. Modular Abelian Varieties
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Thank you!
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