L-functions with rational integer coefficients

Sally Koutsoliotas Bucknell University

joint work with David W. Farmer, American Institute of Mathematics Stefan Lemurell, Gothenburg University & Chalmers University of Technology

> March 14, 2014 Curves and Automorphic Forms Arizona State University

# Wanted: table of hyperelliptic curves

- a. ordered by conductor, N
- b. certain none is missing

Available data: M. Stoll

 $y^2 = x^6 + 4x^5 + 6x^4 + 2x^3 + x^2 + 2x + 1$  $y^2 = x^6 + 2x^3 + 4x^2 + 4x + 1$  $y^2 = 4x^5 - 8x^3 + 8x^2 - 4x + 1$  $y^2 = x^6 - 4x^4 - 2x^3 + 1$ 

Stoll's list does not attempt to be complete.

#### From Brumer and Kramer:

Table 2.Paramodular Abelian Surfaces of ODD Conductor< 1000.</th>

| Ν    | EQUATION                                                                | INFO                    |
|------|-------------------------------------------------------------------------|-------------------------|
| 249  | $x^{6} + 4x^{5} + 4x^{4} + 2x^{3} + 1$                                  | 83                      |
| 277  | $x^{6} + 2x^{5} + 3x^{4} + 4x^{3} - x^{2} - 2x + 1$                     | q                       |
| 295  | $x^{6} - 2x^{3} - 4x^{2} + 1$                                           | 59                      |
| 349  | $x^{6} - 2x^{5} + 3x^{4} - x^{2} - 2x + 1$                              | q                       |
| 353  | $x^{6} + 2x^{5} + 5x^{4} + 2x^{3} + 2x^{2} + 1$                         | wr72                    |
| 389  | $x^{6} + 2x^{5} + 5x^{4} + 8x^{3} + 8x^{2} + 4x$                        | 389                     |
| 427  | $x^{6} - 4x^{5} - 4x^{4} + 18x^{3} + 16x^{2} - 16x - 15$                | 61                      |
| 461  | $x^{6} + 2x^{5} - 5x^{4} - 8x^{3} + 11x^{2} + 10x - 11$                 | q                       |
| 523  | $x^{6} - 2x^{5} + x^{4} + 4x^{3} - 4x^{2} - 4x$                         | 523                     |
| 555  | $x^{6} + 6x^{5} + 5x^{4} - 16x^{3} - 8x^{2} + 12x$                      | 37                      |
| 561  | PRYM                                                                    | 11,51                   |
| 587a | $-3x^{6} + 18x^{4} + 6x^{3} + 9x^{2} - 54x + 57$                        | S <sub>6</sub> , mild@3 |
| 587b | $x^{6} + 2x^{4} + 2x^{3} - 3x^{2} - 2x + 1$                             | S <sub>6</sub>          |
| 597  | $x^{6} + 4x^{5} + 8x^{4} + 12x^{3} + 8x^{2} + 4x$                       | q                       |
| 603  | $x^{6} - 4x^{5} + 2x^{4} + 4x^{3} + x^{2} - 4x$                         | 67                      |
| 623  | $-224x^{6} - 1504x^{5} - 4448x^{4} - 7200x^{3} - 6080x^{2} - 2048x^{4}$ | 89, mild@8              |
| 633  | $24x^{6} + 40x^{5} + 28x^{4} + 80x^{3} + 52x^{2} - 32x$                 | 211 , mild@2            |
| 657  | WEIL RESTRICTION                                                        | u, notSS                |
| 665  | PRYM                                                                    | 19,35                   |
| 691  | $x^{6} + 2x^{5} - 3x^{4} - 4x^{3} + 4x$                                 | 691                     |
| 709  | $-4x^5 - 7x^4 - 4x$                                                     | 709                     |
| 713a | $x^{6} + 2x^{5} + x^{4} + 2x^{3} - 2x^{2} + 1$                          | 23,31                   |
| 713b | $x^{6} - 2x^{5} + x^{4} + 2x^{3} + 2x^{2} - 4x + 1$                     | 23,31                   |

What is already known:

| Mestre              | Stoll                | Brumer & Kramer  |  |  |
|---------------------|----------------------|------------------|--|--|
| everything*         | hyperelliptic curves | abelian surfaces |  |  |
| none with $N < 107$ |                      |                  |  |  |
|                     | 169                  |                  |  |  |
|                     | 249                  | 249              |  |  |
|                     | 277                  | 277              |  |  |
|                     | 295                  | 295              |  |  |

**Goal:** make a complete list up to  $N_{max}$ , say 300.

- 1. prove there are no other conductors,  $\textit{N} \leq \textit{N}_{max}$
- 2. for each conductor found, find all the isomorphism classes

# L-function axioms

• Dirichlet series 
$$L(s) = \sum_{n=1}^{\infty} \frac{A_n/\sqrt{n}}{n^s}$$
  $A_n \in \mathbb{Z}$ 

• Functional equation

$$\Lambda(s) := N^{s/2} \, \Gamma_{\mathbb{C}}(s+\frac{1}{2})^2 \, L(s) = \pm \Lambda(1-s)$$

• Euler product 
$$L(s)=\prod_p F_p(p^{-s})^{-1},$$
 where $F_p(z)=G_p(z/\sqrt{p})$  with  $G_p(z)\in\mathbb{Z}[z]$ 

# L-function axioms

• Dirichlet series 
$$L(s) = \sum_{n=1}^{\infty} \frac{A_n/\sqrt{n}}{n^s}$$
  $A_n \in \mathbb{Z}$ 

• Functional equation

$$\Lambda(s) := N^{s/2} \, \Gamma_{\mathbb{C}}(s+\frac{1}{2})^2 \, L(s) = \pm \Lambda(1-s)$$

• Euler product 
$$L(s) = \prod_{p} F_{p}(p^{-s})^{-1}$$
, where $F_{p}(z) = G_{p}(z/\sqrt{p})$  with  $G_{p}(z) \in \mathbb{Z}[z]$ 

Furthermore

- $F_p(0) = 1$
- If p ∤ N then F<sub>p</sub>(z) has degree 4.
  If p|N then F<sub>p</sub>(z) has degree ≤ 3.
- If  $p \nmid N$  then all roots of  $F_p(z)$  lie on |z| = 1.

► If p|N then each root of  $F_p(z)$  lies on  $|z| = p^{m/2}$ for some  $m \in \{0, 1, 2, 3\}$ .

#### **Conclusion:** there are only finitely many choices for $F_p$ for each p.

| prime, p | good | bad |
|----------|------|-----|
| 2        | 35   | 26  |
| 3        | 63   | 32  |
| 5        | 129  | 38  |
| 7        | 207  | 44  |

Number of possible local factors

#### The Method:

For a given N and  $\varepsilon = \pm 1$ , everything about the L-function is known except the coefficients.

 $\implies$  find coefficients such that the functional equation is true  $${\rm OR}$$  prove that the L-function cannot exist.

## The Approximate Functional Equation

g(s): a nice test function

$$g(s) \Lambda(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \int_{(\nu)} f_{compl.}(g) + \sum_{n=1}^{\infty} \frac{\overline{a_n}}{n^{1-s}} \int_{(\nu)} f_{compl.}(g)$$

Solving for L(s) gives

$$L(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \int_{(\nu)} h_{\text{compl.}}(g) + \sum_{n=1}^{\infty} \frac{\overline{a_n}}{n^{1-s}} \int_{(\nu)} h_{\text{compl.}}(g)$$

Choose  $s_0$  and  $g_1(s)$ :

 $L(s_0) = \bigstar + \bigstar a_2 + \bigstar a_3 + \bigstar a_4 + \bigstar a_5 + \bigstar a_6 + \dots$ 

Example:  $g(s) = e^{\frac{7}{8}s}$ , if  $f \in S_{24}(\Gamma_0(1))$  then

 $L(\frac{1}{2}, f) = 1.473a_1 + 1.186a_2 - 0.0959a_3 - 0.00772a_4 + 0.000237a_5 + \cdots$ 

## Our Method

 $s_0, g_1: L(s_0) = \bigstar + \bigstar a_2 + \bigstar a_3 + \bigstar a_4 + \bigstar a_5 + \bigstar a_6 + \dots$  $s_0, g_2: L(s_0) = \bigstar + \bigstar a_2 + \bigstar a_3 + \bigstar a_4 + \bigstar a_5 + \bigstar a_6 + \dots$ 

Subtracting gives:

 $0 = \bigstar + \bigstar a_2 + \bigstar a_3 + \bigstar a_4 + \bigstar a_5 + \bigstar a_6 + \dots$ 

Apply Ramanujan bounds for  $a_i$  and check whether LHS = RHS.

Example: no hyperelliptic curve with  $\mathit{N}=$  125 and arepsilon=+1

Choose  $s_0 = \frac{1}{2}$ . Using the test function g(s) = 1:

 $L(\frac{1}{2}) = 0.123 + 0.0241a_2 + 0.0058a_3 + 0.00195a_4 + 0.00075a_5 + \cdots$ 

and with  $g(s) = e^{\frac{1}{4}s}$ :

 $L(\frac{1}{2}) = 0.116 + 0.01834a_2 + 0.00444a_3 + 0.0013a_4 + 0.00044a_5 + \cdots$ 

Subtracting and rescaling:

 $0 = 1 + 0.427a_2 + 0.187a_3 + 0.087a_4 + 0.043a_5 + 0.022a_6 + \cdots$ 

Try  $F_2(x) = 1 - 2\sqrt{2}x + 4x^2 - 2\sqrt{2}x^3 + x^4$ :

 $0 = 2.57 + 0.254a_3 + 0.049a_5 + 0.0130a_7 + 0.00399a_9 + \cdots$ 

The Ramanujan bound is  $|a_p| \le 4$ .  $\implies$  Contradiction. (34 more choices to try for  $F_2$ .)

## Searching a tree:



## For $N \leq 300, \varepsilon = +1$

eliminate all except:

| 121 | 154 | 165 | 169 | 187 | 196 | 209 | 210 | 220 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 225 | 231 | 238 | 249 | 255 | 256 | 264 | 266 | 277 |
| 280 | 285 | 286 | 289 | 294 | 295 | 297 | 300 |     |

## For $N \leq 300, \varepsilon = +1$

eliminate all except:

| 121 | 154 | 165 | 169 | 187 | 196 | 209 | 210 | 220 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 225 | 231 | 238 | 249 | 255 | 256 | 264 | 266 | 277 |
| 280 | 285 | 286 | 289 | 294 | 295 | 297 | 300 |     |

N = 121:  $L(s, E_{11})$   $L(s, E_{11})$ 

## For $N \leq 300, \varepsilon = +1$

eliminate all except:

| 121 | 154 | 165 | 169 | 187 | 196 | 209 | 210 | 220 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 225 | 231 | 238 | 249 | 255 | 256 | 264 | 266 | 277 |
| 280 | 285 | 286 | 289 | 294 | 295 | 297 | 300 |     |

$$\begin{array}{ll} N = 121: & L(s, E_{11}) & L(s, E_{11}) \\ N = 154: & L(s, E_{11}) & L(s, E_{14}) \\ N = 286: & L(s, E_{11}) & L(s, E_{26}) \end{array} ( {\rm two \ distinct \ L-functions} ) \\ \end{array}$$

## For $N \leq 300, \varepsilon = +1$

eliminate all except:

| 121 | 154 | 165 | 169 | 187 | 196 | 209 | 210 | 220 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 225 | 231 | 238 | 249 | 255 | 256 | 264 | 266 | 277 |
| 280 | 285 | 286 | 289 | 294 | 295 | 297 | 300 |     |

product of two elliptic curve L-functions over  $\ensuremath{\mathbb{Q}}$ 

## For $N \leq 300, \varepsilon = +1$

eliminate all except:

| 121 | 154 | 165 | 169 | 187 | 196 | 209 | 210 | 220 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 225 | 231 | 238 | 249 | 255 | 256 | 264 | 266 | 277 |
| 280 | 285 | 286 | 289 | 294 | 295 | 297 | 300 |     |

product of two elliptic curve L-functions over  $\mathbb Q$  hyperelliptic curve/product of conjugate cuspforms

## N = 169

hyperelliptic curve: 
$$y^2 = x^6 + 4x^5 + 6x^4 + 2x^3 + x^2 + 2x + 1$$
 (Stoll)

But L-function is not primitive-it arises from two conjugate cuspforms of level 13:

$$L(s) = L(s, f) L(s, \overline{f}).$$

Specifically,

 $f_1, f_2 \in S_2(\Gamma_0(13), \chi_{13}(4, \cdot))$  2-dimensional

where  $\chi$  is the Dirichlet character defined by  $\chi_{13}(4,2) = \frac{1}{2} + i \frac{\sqrt{3}}{2}$ .

Now,

$$f_1(q) = q + \left(\frac{-3 + i\sqrt{3}}{2}\right)q^2 + \left(-1 + i\sqrt{3}\right)q^3 + \cdots$$
$$f_2(q) = q + \left(\frac{-3 - i\sqrt{3}}{2}\right)q^2 + \left(-1 - i\sqrt{3}\right)q^3 + \cdots$$

We find, in arithmetic normalisation,

$$L(s)=1-\frac{3}{2^s}-\frac{2}{3^s}+\cdots$$

which agrees with the data from the LMFDB up to  $a_{19}$ .

## For $N \leq 300, \varepsilon = +1$

eliminate all except:

| 121 | 154 | 165 | 169 | 187 | 196 | 209 | 210 | 220 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 225 | 231 | 238 | 249 | 255 | 256 | 264 | 266 | 277 |
| 280 | 285 | 286 | 289 | 294 | 295 | 297 | 300 |     |

product of two elliptic curve L-functions over  $\mathbb{Q}$ hyperelliptic curve/product of conjugate cuspforms hyperelliptic curve/abelian surface/paramodular form (Stoll; Brumer and Kramer; Poor and Yuen)

## For $N \leq 300, \varepsilon = +1$

eliminate all except:

| 121 | 154 | 165 | 169 | 187 | 196 | 209 | 210 | 220 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 225 | 231 | 238 | 249 | 255 | 256 | 264 | 266 | 277 |
| 280 | 285 | 286 | 289 | 294 | 295 | 297 | 300 |     |

product of two elliptic curve L-functions over  $\mathbb{Q}$ hyperelliptic curve/product of conjugate cuspforms hyperelliptic curve/abelian surface/paramodular form (Stoll; Brumer and Kramer; Poor and Yuen)

What about N = 256?

## *N* = 256

The L-function is not primitive; arises from two conjugate cuspforms of level 16.

$$L(s) = L(s, f) L(s, \overline{f})$$

Now,

$$f_1, f_2 \in S_2(\Gamma_0(16), \chi_{16}(11, \cdot)) \quad \text{ 2-dimensional}$$

where  $\chi$  is the Dirichlet character defined by  $\chi_{16}(11,5)=i, \ \chi_{16}(11,15)=1$ 

and *q*-expansion:

$$q + (-1 \mp i)q^2 + (-1 \pm i)q^3 \pm 2iq^4 + (-1 \mp i)q^5 + 2q^6 + \cdots$$

Does it come from a hyperelliptic curve?

**Computational Theorem:** For  $N \le 300$  and  $\varepsilon = +1$ , the only levels for which there exist L-functions are those that were previously known.

**Computational Theorem:** For  $N \le 450$  and  $\varepsilon = -1$ , the only level for which there exists an L-function is 407.

N = 407 arises from  $L(s, E_{11}) L(s, E_{37})$ .

# **Final Questions**

- 1. Does N = 256 come from a variety?
- 2. Why are there more non-primitive L-functions?
- 3. Why are small levels more likely to be odd?
- 4. Do all possible local factors eventually arise?

## Stoll's search method

$$y^2 = x^6 + c_5 x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + 1$$

- 1. loop over curves where  $c_j$  are small  $(|c_j| \le 5)$
- 2. find the discriminant  $\Delta$ ; continue if not too big
- 3. determine the conductor, N
- 4. save the curve if N is small

Only *N* odd cases.

Curves with small N but large coefficients will be absent from list.