
A TARGETED MARTINET SEARCH

ERIC D. DRIVER AND JOHN W. JONES

Abstract. Constructing number fields with prescribed ramification is
an important problem in computational number theory. In this paper,
we consider the problem of computing all imprimitive number fields
of a given degree which are unramified outside of a given finite set of
primes S by combining the techniques of targeted Hunter searches with
Martinet’s relative version of Hunter’s theorem. We then carry out this
algorithm to generate complete tables of imprimitive number fields for
degrees 4 through 10 and certain sets S of small primes.

An important problem in the study of fields is to determine all number
fields of a fixed degree having a prescribed ramification structure. This
paper will focus on finding all imprimitive number fields of a given degree
unramified outside of a finite set of primes.

Hunter’s theorem has been used extensively for computing all primitive
number fields of a given degree with absolute discriminant below a given
bound. In [13], Martinet gives a version of Hunter’s theorem suitable for
relative extensions which has been used to carry out similar searches for
imprimitive fields [4, 5, 16, 17, 18, 19]. Note however that for even modest
degree fields and small set of primes, such as S = {2, 3}, using a standard
Hunter search to find all fields unramified outside S can become computa-
tionally burdensome. This can be ameliorated by carrying out a targeted
Hunter search where one searches for all fields with specific discriminants,
but only those possible for fields unramified away from S. This approach was
introduced in [6] and refined in [7] to determine all sextic and septic fields
with S = {2, 3} respectively. It has subsequently been used to investigate
fields of degrees 8 and 9 ramified at a single prime in [11, 12].

In this paper, we combine Martinet’s theorem with the targeted search
technique to form what we call a targeted Martinet search. We then demon-
strate the algorithm by using it to compute complete tables of imprimitive
decic fields with prescribed ramification.

Section 1 describes the process of conducting a number field search based
on Martinet’s theorem. The size of the relative extensions considered in
applications here are larger than those in the literature. Section 2 describes
how targeting can be used with a search described in section 1, with details
on combining congruences and archimedean bounds given in section 3. Fi-
nally, section 4 summarizes the results of several searches carried out using
the methods of this paper.
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1. Martinet’s Theorem and Archimedean Bounds

If K is a number field, OK will be its ring of integers and dK ∈ Z will
denote its discriminant. Hermite’s constant for j-dimensional lattices will
be denoted γj .

A standard approach to computing complete tables of degree n extensions
of Q with discriminant |dK | ≤ B for some bound B is to use Hunter’s theo-
rem. This approach is only guaranteed to find all primitive extensions, i.e.,
those with no intermediary fields. We will be interested in imprimitive ex-
tensions and will make use of Martinet’s generalization of Hunter’s theorem
for relative extensions [13].

Theorem 1 (Martinet). Let K be a number field of degree m over Q and
let L be a finite extension of K of relative degree n = [L : K]. Let σ1, . . . , σm
denote the embeddings of K into C. Then there exists α ∈ OL − OK such
that

mn∑
i=1

|αi|2 ≤
1
n

m∑
j=1

|σj(TrL/K(α))|2 + γm(n−1)

(
|dL|

nm|dK |

)1/m(n−1)

,

where the αi’s are the conjugates of α. Furthermore, α can be chosen ar-
bitrarily modulo addition by elements of OK and also modulo multiplication
by roots of unity in OK .

We will use the notation in Martinet’s theorem for the remainder of this
paper. We also use the standard notation T2(α) :=

∑mn
i=1 |αi|2.

1.1. Archimedean Bounds. Let α ∈ OL − OK be the element given by
Martinet’s theorem and let fα,K(x) ∈ OK [x] be the characteristic polynomial
for α over K. We write

fα,K(x) = xn + a1x
n−1 + · · ·+ an−1x+ an

where each ai ∈ OK . If ω1, ω2, . . . , ωm is an integral basis for K/Q, then
we may write ai =

∑m
j=1 aijωj where each aij ∈ Z. When working with ai

in this basis, we will denote the column vector (ai1, . . . , aim)T by ~ai. Note
that

〈~ai,~ai〉 =
m∑
j=1

|σj(ai)|2

is a positive definite quadratic form on ~ai. Here, we will mainly report on
upper bounds for 〈~ai,~ai〉. More details can be found in [4, 10, 16, 17].

For the coefficient a1, one can shift the components so that −bn−1
2 c ≤

a1j ≤ bn2 c for each j and 0 ≤ a11 ≤ bn2 c. If a11 through a1k are all zero,
we may normalize the next coefficient 0 ≤ a1,k+1 ≤ bn2 c. Finally, whenever
m = 2 we observe that any search with a given a1 is the equivalent to one
that uses the Galois conjugate of a1, so we may remove any a1 from our list
of candidates whose Galois conjugate is already on the list. A short table of
explicit values for a1 can be found in [10, §2.1] for degree [L : Q] = mn ≤ 10.
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Once the value for a1 has been fixed, we have an exact numerical value
for Martinet’s bound:

T2(α) ≤ Ca1 :=
1
n

m∑
j=1

|σj(a1)|2 + γm(n−1)

(
|dL|

nm|dK |

)1/m(n−1)

.

It may be possible to replace a1 with an equivalent element for which∑m
j=1 |σj(a1)|2 is smaller, and hence gives a more efficient bound Ca1 . This

improvement was incorporated into Martinet-type searches for nonics in [5].
In the most interesting case here, namely when the base field is quadratic
(i.e. m = 2), it is not hard to prove that the values for a1 given in [10] are
already optimal in this regard.

For the constant coefficient an, there is a standard bound derived from
the arithmetic/geometric mean inequality, yielding

〈~an,~an〉 ≤
(
Ca1

n

)n
. (1)

To bound the other coefficients, we first bound the power sum sk =
∑n

j=1 α
k
j ,

and then inductively use Newton’s formula to get bounds on ak. The power
sums sk satisfy

〈~sk, ~sk〉 ≤ Cka1
. (2)

Given ai and si for i ∈ {1, 2, . . . , k − 1}, set ~b = −
∑k−1

j=1 ak−jsj . Then the
coefficient ak satisfies the relation

~ak =
1
k

(~b− ~sk).

1.2. The Method of Pohst. It is possible to improve the bounds on sk
when k ≥ 3 based on a method of M. Pohst [15]. Define

Tk :=
n∑
j=1

|αj |k,

where the αj ’s are the roots of fα,K . Clearly |sk| ≤ Tk. Suppose that an has
been fixed and let t2 be a bound for T2. The method of Pohst uses Lagrange
multipliers to minimize the bounds on Tk (3 ≤ k ≤ n − 1) subject to the
constraints that

∑n
j=1 |αj |2 ≤ t2 and

∏n
j=1 |αj | = |an|. A more detailed

description can be found in [3, p. 458].
In carrying out number field searches based on Martinet’s theorem, there

is little need for better bounds on the sk when n = 2 or 3. The only other
case in the literature is where n = 4, in which case Pohst’s theorem is applied
to the degree mn polynomial NormK/Q(fα,K) (see e.g., [17]). Here, the need
for good archimedean bounds was more pressing for the n = 5 cases under
consideration. We find it useful to apply Pohst’s theorem to both the degree
mn polynomial and individually to fα,K and its conjugates. We explain the
derivation of the latter bounds below.
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For the i-th conjugate polynomial of fα,K , we define

T
(i)
k :=

n∑
j=1

|σij(α)|k (1 ≤ i ≤ m).

In order to get a bound t
(`)
2 for T (`)

2 , we use the Martinet bound to give us

T
(`)
2 =

n∑
j=1

|σ`j(α)|2 ≤ Ca1 −
m∑

i=1
i 6=`

n∑
j=1

|σij(α)|2. (3)

Next, from the arithmetic/geometric mean inequality we have

n∑
j=1

|σij(α)|2 ≥ n

 n∏
j=1

|σij(α)|2
1/n

= n|σi(an)|2/n.

Substituting this into Equation 3, we finally get

T
(`)
2 ≤ Ca1 − n

m∑
i=1
i 6=`

|σi(an)|2/n.

Now let t(i)k be the bound for T (i)
k obtained by applying the method of

Pohst to the i-th conjugate polynomial; we then have |σi(sk)| ≤ t
(i)
k . Com-

bining these bounds together we get

〈~sk, ~sk〉 =
m∑
i=1

|σi(sk)|2 ≤
m∑
i=1

[
t
(i)
k

]2
.

2. Targeting

For the number field K, if p is a prime ideal of OK we denote the com-
pletion of K by Kp, and p the prime below p. Then Op will denote the
ring of integers of Kp and Pp the maximal ideal of Op. The factorization
pOL will be denoted Pe1

1 · · ·P
eg
g and fi will denote the residue field degrees.

Notations for completions LP are analogous to those for K described above.
Finally, if S is our set of integral primes, then we let SK denote the set of
prime ideals of OK which lie above some p ∈ S.

Fix a prime ideal p ∈ SK . Then the decomposition pOL = Pe1
1 · · ·P

eg
g

corresponds to the decomposition of the local algebra

L⊗K Kp
∼=

g∏
i=1

LPi . (4)

At the finest level, a local target for p can be a candidate for L⊗KKp, a sepa-
rable degree n algebra over Kp. For practical reasons, we typically consider
larger targets. For the searches in section 4, our targets consisted of un-
ordered collections of triples (ei, fi, ci) representing the ramification indices,
residue field degrees, and discriminant exponents of the extensions LPi/Kp.
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Note however that in all cases, a local target provides sufficient information
to determine the P-part of dL. Combining this for all primes dividing dK
and primes in S gives dL for applying Martinet’s theorem. Then, larger
targets, such as all extensions where the relative extension is unramified
outside S, can then be searched by searching a series of smaller targets.

As in section 1, fα,K denotes the characteristic polynomial of α over K
where L = K(α). Then fα,K factors into irreducibles over OKp as fα,K =
h1 · · ·hg which correspond to the factorization of L⊗K Kp in equation (4).
Moreover, since α is integral over OK , each hi has coefficients in OKp . For
congruences derived from this factorization, we note that for all k, we have
fα,K ≡ h̃1 · · · h̃g (mod pk) where we may take each h̃i ∈ OK [x] because OK
is dense in OKp . The basic process is to simply compute congruences for the
h̃i modulo pk, and then multiply these polynomials to obtain congruences
for fα,K modulo pk.

Let Γ ⊆ OK be a complete set of representatives for OK/p with 1 ∈ Γ.
Then we immediately have

hi ≡ rei
i (mod PKp) (5)

where ri is a degree fi monic polynomial with coefficients in Γ.
For tamely ramified primes, equation (5) suffices. When the ramification

is wild, however, the congruences given by equation (5) can be improved
significantly by working modulo a power of PKp . We use Ore congruences
as in [7]. We illustrate the general situation with an example.

Consider the case of a cubic extension where we have e = p = 3 and
f = 1. Let ρ be a uniformizer for Kp, and let π be a uniformizer for LP.
Let e0 be the ramification index of PKp over pZp, so that νπ(p) = 3e0. The
minimal polynomial for π over Kp is Eisenstein, so it can be written

fπ(x) = x3 + ρk1Ax2 + ρk2Bx+ ρC ∈ Kp[x],

where A, B, C ∈ OKp . If we let d denote the exponent of PLP
in D(LP/Kp),

then

d = νπ(f ′π(π))

= νπ(3π2 + 2ρk1Aπ + ρk2B)

= min{νπ(3π2), νπ(2ρk1Aπ), νπ(ρk2B)}
= min{3e0 + 2, 3k1 + νπ(A) + 1, 3k2 + νπ(B)}.

It is easy to see that we can always take 1 ≤ k1 ≤ k2 ≤ e0 + 1. Thus, we
would work modulo pk2 .

The coefficients of the characteristic polynomial for any β ∈ PLP
will

satisfy the same divisibility conditions as the coefficients of fπ; and any
element β ∈ OLP

is a translate by some γ ∈ Γ of an element in PLP
.
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Therefore, the corresponding local factor hi will take the form

hi = (x+ γ)3 + ρk1A(x+ γ)2 + ρk2B(x+ γ) + ρC

≡ (x+ γ)3 + ρk1A(x+ γ)2 + ρC (mod Pk2Kp
)

for some A,B,C ∈ OKp and some γ ∈ Γ. We then write A and C as power
series in ρ with coefficients from Γ to obtain explicit congruences.

3. Algorithm Implementation

The bounds derived earlier take the form

〈~a,~a〉 ≤ B (6)

for a positive definite quadratic form 〈 , 〉 where B is a positive real number
and the column vector ~a = (a1, . . . , am)T ∈ Zm represents the element
a =

∑m
i=1 aiωi which is either a polynomial coefficient or a power sum.

Explicitly, if Q = [σi(ωj)]ij , then 〈~a,~a〉 = ~aTQHQ~a where QH denotes
the conjugate transpose of Q and ~aT is simply the transpose of ~a. Since
~a ∈ Zm and 〈~a,~a〉 are real, let A be the matrix of real parts of QHQ, and
our bound (6) becomes ~aTA~a ≤ B.

To get efficient bounds on the components of ~a, we use the Cholesky
decomposition of the quadratic form associated to A as in [2], section 2.7.3.
In our applications, the lattice has very small dimension, so we used a simple
approach to enumerating short vectors in the lattice. With larger lattices,
one might use Fincke-Pohst instead.

Now, suppose we want to find elements a =
∑m

i=1 aiωi ∈ OK which are
congruent to c =

∑m
i=1 ciωi ∈ OK modulo the ideal a. The ideal a is a free

Z-module of rank m = [K : Q], so there exist µj ∈ OK such that

a = µ1Z + µ2Z + · · ·+ µmZ.

Each µj may be written µj =
∑m

i=1 µijωi where µij ∈ Z. We choose our
basis for a so that the matrix M = (µij) is in Hermite normal form.

Now if a ≡ c (mod a) then a− c ∈ a which implies
m∑
i=1

aiωi −
m∑
i=1

ciωi = k1µ1 + · · ·+ kmµm

= k1

m∑
i=1

µi1ωi + · · ·+ km

m∑
i=1

µimωi

for some ki ∈ Z. Equating the coefficients of the ωi’s, we get the following
matrix equation:

~a = M~k + ~c.

Now define ~k′ = ~k +M−1~c. Then

~a = M(~k +M−1~c) = M~k′.
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We now use the bound on ~a to give bounds on the ki’s. From equation (6)
we get

(~k′)T (QM)H(QM)~k′ ≤ B.
As before, there exists an auxiliary matrix A such that (~k′)TA~k′ ≤ B and
A is a positive definite real symmetric matrix. Using the Cholesky de-
composition for A we can enumerate small vectors ~k′, i.e., those satisfying
〈~k′,~k′〉A ≤ B for the positive definite quadratic form given by A. If we write
these bounds as L′i ≤ k′i ≤ U ′i , then we get the following bounds on the ki’s

dL′i − c′ie ≤ ki ≤ bU ′i − c′ic
where ~c ′ = M−1~c. We will write these bounds as Li ≤ ki ≤ Ui. Note that
the bounds Li and Ui depend on the current values of ki+1, . . . , km. So to
obtain all values for ~k, we first loop over the range for km. The current value
for km is used to get looping bounds for km−1. Then the current values for
km and km−1 are used to get looping bounds for km−2, and so on.

The search algorithm loops over all combinations of the ki’s, and for each
combination, computing ~a = M~k + ~c. Observe that the bounds on the ki’s
are smaller than the bounds on the ai’s so that the search region has been
reduced. This is analogous to the one dimensional case where one considers
all elements a such that a = c + kp (here µ1 = p is the modulus of the
congruence vector). If the archimedean bounds are |a| < B then k = a−c

p so
that −B−cp ≤ k ≤ B−c

p .
The above method is modified slightly when the bound is on a power sum

instead of a polynomial coefficient. Suppose we are interested in the jth
(2 ≤ j ≤ n− 1) polynomial coefficient and we have the following bound on
the jth power sum:

〈~sj , ~sj〉 ≤ B.
From Newton’s formula, we may write

j ~aj = ~bj − ~sj

where ~bj = −
∑j−1

i=1 aj−isi ∈ Zm.
If we define

~c ′ :=
1
j
M−1(~bj − j~c)

and
~k′ := ~c ′ − ~k,

then we have

~sj = ~bj − j ~aj
= ~bj − j(M~k + ~c)

= jM

[
1
j
M−1(~bj − j~c)− ~k

]
= jM~k′.
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The bound on ~sj can now be used to get a bound on ~k′:

〈~sj , ~sj〉 = (jM~k′)HQHQ(jM~k′) = j2(~k′)T (QM)H(QM)~k′

=⇒ 〈~k′,~k′〉QM =
1
j2
〈~sj , ~sj〉 ≤

B

j2
.

As before, there exists an auxiliary matrix A such that 〈~k′,~k′〉A ≤ B
j2

and
A is a positive definite real symmetric matrix. The rest of the algorithm
remains the same.

4. Applications

The targeted Martinet search was used to construct complete tables of
imprimitive number fields with prescribed ramification. We did this for
degrees 4, 6, 8, 9, and 10; the results of which can be found on our websites
[8, 9]. The algorithm was programmed in C using the pari library [14].

The web site [8] contains results of Hunter searches for sextic fields which
were known to be complete for all Galois groups except for C2

3 : C4 and
C2

3 : D4. In [6], the search for sextic fields with S = {2, 3} was shown
complete for these groups by class field theory. Using the methods of this
paper, the tables were proven complete for 33 other values of S.

In this section, we consider the specific case of degree 10 fields unramified
outside the set S = {2, 3}. The search was done in two parts. The first part
did a search for quadratic extensions of a quintic base field, and the second
part searched for quintic extensions of a quadratic base field.

The results of our quadratic over quintic search are summarized in Table 1,
where the fields are sorted by Galois group. Searches involving quadratic

Table 1: All decics unramified outside S = {2, 3} and having a quintic
subfield.

T4 T5 T12 T22 T24 T25 T29 T37 T38 T39 Total
1 6 5 30 7 7 42 91 91 546 826

extensions are inherently easier than quintic extensions. This is a relatively
simple computation, so we completed this search in two ways, by targeted
Martinet searches as described above, and by class field theory. We note
that computing quadratic extensions of quintic fields by Martinet searches
has appeared previously in the literature (see [18, 19]). Class field theory is
especially easy to apply in this situation because it just entails taking square
roots of the appropriate elements of quintic fields. This is simplified further
by the fact that we are allowing ramification above 2, and that the 6 quintic
base fields all have narrow class number one. This search took roughly 1.5
hours by a targeted Martinet search and 10 seconds by class field theory
using a script written for gp [14].
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Table 2: All decics unramified outside S = {2, 3} and having a quadratic
subfield, Q(

√
d) with d ∈ {−1,±2,±3,±6}.

K T4 T5 T12 T22 T28 T40 T41 T42 T43 Total
Q(
√
−3) 1 5 1 2 3 12

Q(
√
−1) 1 5 2 6 14

Q(
√

2) 1 2 3 1 4 7 18 31 67
Q(
√
−2) 1 5 5 41 52

Q(
√

3) 1 1 4 4 6 41 57
Q(
√
−6) 1 1 4 2 2 10

Q(
√

6) 1 1 4 3 4 61 74

Table 2 gives the results for the much more difficult quintic over quadratic
search. The data is sorted vertically by quadratic base field, and horizontally
by Galois group. The results are complete for all 7 of the quadratic base
fields which are unramified outside {2, 3}. Run times for the first 6 base fields
varied from 25 hours for the Q(

√
−3) case to 30 days for the Q(

√
2) case. Run

times are heavily dependent on the discriminant of the base field. For the
last base field Q(

√
6), we decided to use a distributed computing approach

using BOINC [1]. We found a dozen volunteer host machines, including a
dual Clovertown (8 cores) and a pair of quad-core Xeon servers. The Q(

√
6)

case was finally settled after about 60 days of hard-core processing. The
total processing time summed over all host machines was 41216 hours (4.7
years), justifying the need for a distributed computing approach.
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