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By relating the title equation to an elliptic curve £ and performing calculations
with the L-series of E, we are able (subject to the standard conjectures) to deter-
mine solvability in rationals of the title equation for all m in the range |m| < 3000.
A wild assertion of Euler is corrected, a table of solutions given for |m| <200, and
statistical information tabulated concerning the distribution of Mordell-Weil ranks
and conjectural orders of Shafarevich-Tate groups. 1995 Academic Press, Inc.

The equation
a*+ma*h® + bt =3, (a,b)=1,a,b>0, (1)

has been studied by several mathematicians since the 17th century. A solu-
tion of (1) is said to be trivial if either ab=0 or a = b =1, which can occur
only when m is of the form k> — 2. Fermat, around 1637, showed there are
no nontrivial solutions of (1) for m =0. Euler [5] showed that, for m = 14,
there are only trivial solutions of (1); he also found nontrivial solutions for
47 values of m between 2 and 200, and for 73 values of —m between 2 and
200. Pocklington [7], Sinha [9], and Zhang [12] produced classes of m
for which (1) has no nontrivial solutions; and Brown [1] completed the
determination of solvability of (1) in the range 0 <m < 100. (Euler had
missed precisely one solvable instance, namely m = 85.) By relating (1) to
the elliptic curve

E:Y'=X(X"+mX+1) (2)

and performing calculations with the L-series of E, we are able, subject to
all the standard conjectures, to determine solvability of (1) for all m in the
range |m| < 3000. We correct a wild assertion of Euler and actually give a
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table of solutions of (1) (which has been lacking to date) for the solvable
cases in the range |m| <200. Some statistical information is tabulated con-
cerning the distribution of Mordell-Weil ranks and (conjectural) orders of
Shafarevich-Tate groups. A surprisingly high proportion of nonzero ranks
is found, cf. Brumer and McGuinness [2] and Zagier and Kramarz [11].
Finally, we draw attention to a curious property of some sums expected to
be transcendental, which appear to be rational.

Equation (2) defines an elliptic curve E for m # + 2, which restriction on
m we henceforth assume. The rational points on E form a finitely generated
Abelian group known as the Mordell-Weil group of E; the study of these
groups and their associated rank is one of the fundamental topics in the
theory of elliptic curves. Integers a, b, ¢ satisfying (1) imply the existence of
a rational point (a?/b? ac/b*) on the curve (2); and it is easy to verify that
this point is of infinite order on E precisely when the solution (a, b, ¢) is
nontrivial. Conversely, a rational point P of infinite order on (2) is
necessarily of type (22, ay) or (—a?, ay) for rational numbers «, 7, with
2#0, 1, % (and the latter type can only occur when m > 0). If P = (a2, a7)
then we immediately obtain a nontrivial solution of (1), and if
P={(—a?, xy), then 2P provides a nontrivial solution of (1) with (g, )=
(2 —1, 2uy).

So nontrivial solutions of (1) occur precisely when the Mordell-Weil
rank of (2) is strictly positive.

We estimate the rank r of the curve E by the following formula concern-
ing the L-series L, (s) of £. We assume the Taniyama-Weil conjecture that
in particular E is modular (for any fixed m, it is a finite calculation to verify
this), and take on faith the Birch and Swinnerton-Dyer conjectures, which
then imply (see, for instance, Tate [10])

. Lu(s) || -detd{ P, P, )
lim = :

=1y T Tor(E)? 3

where w is the real period of E, ¢ is a constant depending on the primes p
of bad reduction of E (the “fudge-factor”), III is the Shafarevich-Tate
group, conjecturally of finite order, {P,, P, is the canonical height pairing
on a system of generators {P,} for the Mordell-Weil group E(Q), and
Tor(E) is the torsion group of E (the reader is referred to Silverman [8]
for a full definition and description of the foregoing arithmetic invariants of
the elliptic curve E'). In particular, L (s) has a zero of order r at s=1 (the
“weak” Birch and Swinnerton-Dyer conjecture).
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Put A(s)=N"?*(2rn) * I'(s) L.(s), where N is the conductor of E. The
curve £ being modular says that its L-series is the L-function of a modular
form of weight 2, so is entire and has a functional equation which may be
written

A(s)=eA(2 =), (4)

where ¢ = +1 is known as the sign of the functional equation. There are
standard rapidly convergent series that allow estimation of L, (1) and the
derivatives L'¥'(1) for k > 1; see, for example, Buhler and Gross [3], and
Buhler ez «l. [4]. Namely, put

um=z%; ()
nzl

then

LE( ] ) — Z (i'l (e - 2nn.\‘_.-"\.'.—'~’ 4 e 2nnix \’:V ), (6)

nx=1

where x is any positive real number (note that this formula allows a simple
means of computing the sign ¢). Further,

LOmy=2% Y 26, (2’"’),

n=1 n —ﬁ
where
. 1 = - Y. ﬂ
Gk(f)—mfl e “(logy) ) (k=1),

from which can be obtained (see [3])

a 2nnx 2nn
L.(1)= G| —=)-eG| —= 7
2n=3 5( (ﬁv) ‘3 (ﬁ/)) 7

where G(r) is the exponential integral function
s e — fu

G(t)y=| —du,

(=]~

and again x is any positive real number.

Our procedure for performing the calculations was as follows. For a
given m, first compute the sign ¢, using (6). First, if e= +1, then (6) with
x =1 collapses to

L(1)=2 Y Zne-2mi¥ "

nzl
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and so L;(1) can be computed to any desired degree of accuracy. If
L(1)#0, then the rank is zero, and the conjectural order of |III| can be
calculated from (3). If L.(1)=0, then the rank, which is even, is thus at
least 2. Over the range of computations, there are no instances of rank 4
or greater, which was verified by calculating L2'(1).

Second, if e= — 1, then necessarily the rank, which is odd, is at least 1.
From (7) with x=1, we have

Li1)=2 Y ﬁc(zﬂ); (9)

nz=1 \/N

if Lz(1)#0, then the rank is precisely one, and if L;(1)=0, then the rank
is at least 3. Over the range of the computations, there are no instances of
rank 5 or greater, verified by calculating L(1).

Pari-GP was used for the programming, and the calculations were per-
formed on a DEC 5000 work station. Accuracy was such that values of the
sums either were quite far from zero (nearly always larger than 1, for
instance), or else equal to zero to about six decimal places; we have con-
fidence that the sums equal to zero are identified correctly.

Much information is available that we do not actually list here, for
instance, a specific list of values of m in the range |m| < 3000 for which (1)
is solvable. We content ourselves with mentioning those m in the range for
which (2) has rank 3, namely m= —2916, — 1115, —676, 716, 863, 1024,
1311, 1448, 1492, 1584, 1724, 2208, 2506, 2714.

Table I lists the distribution of ranks of the curve (2) in the range
1 <m <3000, m#2; about 20.95% of curves where the sign of the func-
tional equation is + 1 have rank 2. Table II gives the distribution of |III|
amongst the rank O curves of Table I. Table III lists the distribution of
ranks of (2) in the range —3000<m < —1, m# —2; about 11.22% of cur-
ves where the sign of the functional equation is + 1 have rank 2. Table [V
gives the distribution of |III| amongst the rank O curves of Table III. In
accordance with these rank calculations, Table V lists precisely those m in
the range considered by Euler (namely —200<m <200) for which there
exists a nontrivial solution of (1), and gives a single solution in the case
r=1, and a pair of solutions in the case r=2. These solutions in fact
correspond to generators for the respective Mordell-Weil group of (2),
with the exception of the three instances m =99, 155, 195, where the listed
solution corresponds to twice a generator (having a negative value of x).

641,50/2-8
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TABLE 1

(m>0)

Rank Curves (2) with this rank

0 1204 (40.15%)

1 1465 (48.85%)

2 319 (10.64 %)

3 11 (0.37%)
TABLE I

Distribution of |1l Among Rank 0 Curves of Table I

|| No. | LLE| No.
1 246 25 4
4 664 36 18
9 40 49 0
16 228 64 4
TABLE Il1
(m<0)
Rank Curves (2) with this rank
0 1322 (44.08 %)
1 1507 (50.25%)
2 167 (5.57 %)
3 3(0.10%)
TABLE 1V

Distribution of |1lI| Among Rank 0 Curves of Table 2

hiif] No. 1) No.
1 35 81 1
4 324 100 19
9 15 144 37
16 531 256 25
25 3 324 1
36 99 400 2
49 0 576 1

64 229
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TABLE V
m a b ¢
8 2 1 7
12 3 2 23
13 4 3 47
16 2 1 9
17 4 1 23
23 3 1 17
24 3 2 31
26 2 1 11
27 4 3 65
31 3 1 19
33 21 8 1063
36 12 1 161
38 2 1 13
4] 4 3 79
42 6 1 53
44 4 1 31
3 2 41
48 6 1 55
49 56 9 4721
52 2 1 15
55 15 1 251
56 5 2 79
57 55 12 5831
60 273 10 77471
61 5 4 159
63 4 3 97
64 3 2 49
12 7 689
66 3 1 26
67 21 4 817
68 2 1 17
71 5 1 49
73 8 3 215
77 8 1 95
78 3 1 28
79 4 1 39
83 8 1 97
84 12 5 569
85 4340 1287 54858119
86 2 1 19
87 3 3 233
89 4 1 41
5 4 191
90 35 6 2339
92 7 2 143
94 3 2 59
95 15 7 1049
96 4 3 119
99 312 215 676081
100 15 4 641
104 6 1 71
7 2 151
106 2 1 21
107 5 4 209
109 1596 869 14721631
112 6 1 73
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TABLE V—Continued

m a b c
118 10 3 341
120 2091 1550 35852719
122 4 1 47

3 2 67

125 1480 949 15880601
127 3 1 35
128 2 1 23
4 3 137

131 12 1 199
132 10 3 359
12 7 977

133 7 4 327
134 4 1 49
135 39 5 2729
137 377 28 188327
140 5 2 121
15 8 1439

141 60 7 6151
143 3 1 37
7 1 97

144 427 132 700729
151 7 1 99
152 2 1 25
153 4635 1672 98276359
155 104 95 123809
156 4 3 151
9 2 239

159 5 3 191
160 5 2 129
161 7 4 359
162 3 2 77
166 6 5 389
168 9 2 247
55 6 5239

169 56 11 8601
171 33 4 2041
172 21 10 2791
173 4 1 55
175 891 425 5075131
177 12 1 215
178 2 1 27
181 780 31 689911
183 12 1 217
184 6 1 89
186 252 221 763751
187 4 1 57
188 8 1 127
189 432 65 428801
191 5 3 209
194 5 1 74
195 1412568 474985 9582059430001
196 8 1 129
4 3 169

197 8 3 343
56 1 3233

198 3 2 85
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TABLE V—Continued

m a b c
199 15 7 1499
200 70 1 4999

-4 2 1 1

-9 3 1 1
-11 4 1 9
-13 4 1 7
-15 95 24 1951
-16 4 1 1
-25 5 1 1
-20 6 1 19
-27 21 4 65
-28 6 1 17
-32 12 1 127
-36 6 1 1

39 4 1199

-39 155 24 6151
-40 15 2 121
-42 21 2 347
-43 55 8 911
-44 20 3 41
-47 8 1 33
-49 7 1 1
8 1 31

-51 88 3 7511
-64 8 1 1
-67 33 4 137
-70 35 4 359
-72 104 3 10487
.74 10 1 51
-76 10 1 49
77 72 7 2705
-78 55 6 811
-79 48 5 871
-80 4560 469 8155961
-81 9 1 1
-85 39284 3085 1075823719
-86 28 3 89
-89 12 1 89
-90 1290 133 346811
-92 20 1 351
-96 408 23 138769
-99 693505 47424 352465113601
-100 10 1 1
-101 287 8 79071
-103 55 4 2041
-104 105 4 10159
-105 130515 12319 4330566239
-106 33 2 851
-107 12 1 73
-108 3950 147 14388391
-109 12 1 71
-111 26546303927 2267574960 307287992933073391278
-113 63 5 2131
-115 332755 30912 9676740631
-116 69 4 3719
-118 55 2 2779
-119 56 5 711
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TABLE V—Continued

m a b c
-121 11 1 1
-123 12 1 55
-125 10301109 819640 48470941790119
-126 35 3 334
-129 90513 4879 6477768001
-131 644 39 298951
-132 657 56 87457
-133 6068 517 6846703
-134 145 12 6031
-136 209 14 27271
-140 271908 10165 66307815911
-141 67124 4845 2321283551
-142 12 1 17
-144 12 1 1

2580 77 6214871

-146 14 1 99
-148 14 1 97
-149 592 45 130711
-151 689 40 332671
-156 152 3 22391
-160 21320 1519 196995361
-166 35 2 829
-167 56 3 2263
-168 689 24 423583
-169 13 1 1
-171 150017 8772 14503826441
-176 67452 5083 109317209
-179 335 24 31999
780 29 527791

-180 70 3 4009
-181 184428 13585 4557781991
-182 28 1 687
-185 2403 175 793159
-186 204 11 28201
-187 301 12 75953
-189 4721145 208544 17708744652239
-190 35 I 1126
-191 16 1 129
56 1 3039

-192 154908 3241 22965971473
-193 16 1 127
-195 | 3677683140865 | 239483286336 | 5628067524800453986859521
-196 14 1 1
70 1 4801

-197 72 5 1159
399 8 152767

-200 145 4 19359

This table allows correction of a wild assertion by Euler [5, Sect. 28]
that he had found all m in the range —200 <m < —2 for which there exist
nontrivial solutions of (1)—he was missing 22 values, including the cases
m= —80, —85, —99. The editors of Euler’s collected works do, however,
remark in a footnote that a proof of the assertion is missing!
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We do not provide a proof that Table V is complete either, although we
have every belief that it is so. What is missing is to verify the
Taniyama—Weil conjecture for the values of m where L(1) was calculated
to be nonzero. Then we could invoke the results of Kolyvagin [6], which
prove the weak Birch and Swinnerton—Dyer conjecture for modular elliptic
curves over Q whose L-functions vanish to order at most 1.

The tables allow other errors to be corrected. Euler [5, Section 19] lists
a solution m =145, (a, b) = (159, 40); but m = 145 has no nontrivial solu-
tions, and (a, b) =(159, 40) “belongs” to m = 303. Further, in addition to
the omissions for negative values of m mentioned above, he lists m = 188
as possessing nontrivial solutions, which is not the case. Pocklington [7,
Sect. 9] states that [1] has no solutions for m = —27, but see Table V.
Brown [1, Sect. 1] has the equation solvable for m =39; a misprint for
m=38.

We remark that there is a striking difference between the curves with
m >0 and m < 0. As the tables show, curves with m <0 seem less likely to
have rank 2 or 3, and have significantly larger values for the order of III
than the curves with m > 0. Furthermore, for the rank 1 curves with m <0,
the height of a generator tends to be larger than for rank 1 curves with
m>0.

The only explanation we offer is the trivial observation that if m is
negative, Eq. (2) has no solutions with x <0; hence it is less likely to have
nontorsion points. (Note that curves with m <0 have roughly half as many
rank 2 curves as those with m > 0.) However, a precise statement and proof
for these differences seems to be currently out of reach.

At the suggestion of the referee, however, we give illustrative details for
one of the entries in Table V (namely, m= —195) where a solution was
previously unknown.

Without loss of generality we can suppose from a*— 1954°6%+ b* = ¢?
that a=1mod 2, b=0mod 2. By parametrizing the underlying quadratic
form, it follows that there exist integers 4, p, g, (p, q) = 1, satisfying

ha* = 197p* + 390pq + 1934

and then A | 2.193.197.
Since h=p’—2pg+qg’=(p—¢q)*mod4, then h#2modd4, so
h|193.197. Taking h=1, then

(197p + 193¢)(p + q) = a*

pa=(b/2)" (1)
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We can assume without loss of generality that p, ¢ are positive, and then
coprimality of the factors on the left-hand side of (11) implies that there
exist integers r, s, ¢, u satisfying

197p+193g=r*; p+q=s’p=r’;q=u’
with r=s=u=1mod 2, r=0mod 2. Then
r?=197s% — 4> (12)
rP=s'—ut (13)
From (12),
(r + 2iu)(r — 2iu) = 197s*
and it follows that there exist coprime integers g, & with
r+ 2iw=(unit)(— 1 + 14i)(g + ih)? (14)

with the unit equal to 1 or i
From (14) mod 2,

= (unit)(g + ih)?

which forces the unit to equal 1.
Expanding (14),

r=—g>—28gh+h?
+u=7g>—gh—Th? (15)
with
s=g*+ h%
Further, from (13), there exist integers j, k with
t=2jk
u=j—k? (16)
s=j24+k?
so that, from (15) and (16),
g +h=j1+k?
72 —gh~Th? = £ (j* — k). (17)
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A small computer search reveals the solution (g, A, Jj, k)= (456, — 553,
688, 201), leading to the solution of Table V.

4

In the case of a curve (2) of rank 0, the sign of the functional equation
is +1, and (3) and (8) may be combined to give

. ~27zn VN C‘m‘
Z ©2{Tor(g)|?

n>l n

(18)

In particular, the sum on the left-hand side of (18) delivers a rational
number.

Now if the sign of the functional equation is —1, then the right-hand
side of (8) is no longer equal to L(1), and there seems no reason why the
left-hand side of (18) should still deliver a rational number. This indeed
appears to be borne out in practice, with values appearing decently trans-
cendental, though there are a few curious exceptions. Within the range of
computation of this paper (|m| < 3000), there are precisely five values of m
where the sign in the functional equation for E is — 1, yet

L

—27m\_ (19)

8!'—‘
:]Q

appears to be rational (with calculations to 28 decimal places). These
values are given in Table VI.
Here E’ is the 2-isogenous curve to £, given by

yr=x(x?=2mx+m’ —4). (20)

We have observed this phenomenon on just two other elliptic curves,
namely the 3-isogenous pair E: y>=x>—4 and E’: y*= x* + 108, for which
sg=1/3, sp;-=1/3. We are not able to give a satisfactory explanation of this
rationality.

TABLE VI
m Sg Sk
—222 4
—70 2
13 1/2

178 1
418 2

[
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