
INERTIA SUBGROUPS FOR OCTIC 2-ADIC FIELDS
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Abstract. We present an algorithm for computing the inertia sub-
group for the normal closure of an octic extension of a 2-adic number
field. The principal application is to octic extensions of Q2

1. Introduction

Let F/K be a finite extension of number fields, F ∼= K[x]/〈g(x)〉. There is
a considerable literature on computing Galois groups of polynomials which
one can apply to the computation of G = Gal(g(x)) = Gal(F̂ /K) where F̂
is the normal closure for F/K. From a number theoretic point of view, more
refined information is desirable.

If P is a prime ideal of the ring of integers OK , then for each prime ideal
Pj of OF above P , we have subgroups of G, Dj ≥ Ij , the decomposition and
inertia subgroups of Pj respectively. Computing Dj is equivalent to com-
puting the Galois group of the completion F̂Pj/KP , i.e., Gal(gj(x)) where
gj(x) is the corresponding irreducible factor of g(x) over KP . Thus, existing
techniques for computing Galois groups can be applied, provided they can
be carried out effectively over KP . This leaves the computation of inertia
subgroups Ij , for which there is very little literature. We address the case
where deg(gj) = 8 and KP ⊇ Q2. For much simpler lower degree cases, see
[JR06].

The case of greatest interest is where KP = Q2. We have implemented
the algorithm detailed below with results posted at the web site [JR04b].
The algorithm here complements the results of [JR] where the 2-adic octic
fields of [JR04b] are discussed.

Section 2 gives notation and background. Section 3 deals with cases
which can be handled fairly easily, and Section 4 treats the remaining more
complicated cases.

2. Preliminaries

2.1. Notation. We now adjust our notation to be suitable for the case at
hand. The base field K will be a finite extension of the 2-adic numbers,
Q2, and F is an extension of K with [F : K] = 8. We assume g(x) ∈
K[x] is irreducible, with F ∼= K[x]/〈g(x)〉, so deg(g(x)) = 8. As above,
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F̂ denotes the normal closure of F/K, i.e., is a splitting field of g(x), and
G = Gal(F̂ /K) = Gal(g(x)).

Let F̂ un be the maximum unramified subextension for F̂ /K. In particular
F̂ un is the fixed field of I, the inertia subgroup of G. The residue degree f
for F/K is equal to 1 if and only if g(x) remains irreducible over F̂ un. So,
when f = 1, we use the standard classification of transitive subgroups of Sn

by T -numbers (see [BM83]) for describing I. However, if f > 1, then I is an
intransitive subgroup of Sn, and there is no standard classification of these.
In this case, we will only seek to classify I up to isomorphism, i.e., as an
abstract group. We then give I by its group number in the program gap.
For example, [8, 3] specifies a group of order 8, and it has been numbered 3
in gap. For convenience, we also give a more descriptive name for the group
when possible, so for example, [8, 3] = D4.

Note, S8 has transitive subgroups which are isomorphic, but not conju-
gate. For example, T19

∼= T20. So, computing T -numbers of inertia sub-
groups in the case f = 1 provides more refined information than specifying
I as an abstract group.

2.2. Assumptions. We assume that we have the following available infor-
mation:

(1) the Galois group G = Gal(F̂ /K)
(2) the unramified degree f for F/K
(3) the size of the inertia subgroup |I| (given condition (1) this is equiv-

alent to the unramified degree for F̂ /K)
(4) subfield information for extensions of degree ≤ [F : K] = 8.

These conditions are all met in the context of [JR06, JR, JR04a]. In each of
these cases, for a given field, one first computes subfields, the Galois group,
and the slope filtration for higher ramification groups (in that order) before
computing inertia subgroups. As we will see, this data is not sufficient to
compute inertia groups, so in some cases we also compute various resolvent
algebras of the octic extension.

2.3. Resolvents. The most common resolvents we use are as follows. The
polynomial discriminant of g(x) is in essence a resolvent, x2 − disc(g(x)),
which allows us to construct the discriminant root field for F/K, disc(F ) :=
K(

√
disc(g)). This field is independent of the choice of defining polynomial

g(x), and corresponds via Galois theory to the fixed field of Gal(F̂ /K)∩A8.
We also use the discriminant polynomial. If the roots of g(x) are α1, . . . ,

α8 ∈ Q2, then

gdisc(x) =
∏
i<j

x− (αi − αj)2 .

This is an absolute resolvent corresponding to the intransitive subgroup
S2 × S6 < S8. It can be computed easily as a resultant by the formula
gdisc(x2) = Resultanty(g(y), g(x+ y))/x8. Here, gdisc(x) has degree 28.
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The polynomial discriminant and the discriminant polynomial can be ap-
plied to polynomials of any degree. In a few cases, we use two other resol-
vents which are specific to octics. One is the absolute resolvent of degree
35 corresponding to T47 < S8, which we denote by f35(x). The other is an
octic resolvent f8(x) which is defined for octic fields containing a quartic
subfield. Details on both are given in [JR].

In all cases where we need to compute resolvents, if the resulting polyno-
mial is not separable we use the standard technique of applying a Tschir-
inhaus transformation to g(x) and trying again until the result is separable
(see e.g., [Coh93, §6.3]).

One use of resolvents below is to compute sibling fields. A subfield F sib ⊂
F̂ is a sibling of F if F and F sib are not isomorphic, but F̂ is also the normal
closure of F sib. A sibling set is a maximal set of non-isomorphic siblings.
Note, a sibling set of octic fields do not necessarily have the same T -number
See [JR] for more information on sibling sets for octic fields.

2.4. Algorithm Overview. The approach to computing inertia subgroups
is similar in some ways to methods for computing Galois groups of polyno-
mials. Group theory cuts down the number of possibilities to a finite list,
and then one looks for computable invariants which distinguish these possi-
bilities from each other.

For each Galois group G, we start with candidates for the ramification
filtration (see e.g. [Ser79, Chap. 4]). The group G has normal subgroups I
and W , its inertia subgroup and wild ramification group, with I ≤W ≤ G.
Moreover, G/I is cyclic corresponding to the Galois group of the maximum
unramified extension of F̂ /K, I/W is cyclic of order dividing |k|[G:I] − 1
corresponding to the totally ramified tame part of the extension, and W is
a 2-group. Here, k denotes the residue field of K.

For the Galois theory of octics, there are 50 conjugacy classes of subgroups
of S8 to consider. Our first step in determining the inertia group of an
extension with Galois group G is to compute all possible pairs (I,W ). Then,
we look for simple ways of distinguishing the candidates for I. To a certain
extent, one is forced into an extensive case by case analysis. Consequently,
we only report the results of this analysis below. Note, in each case the
proposed algorithm can be checked for correctness by a computation with
finite groups. Many computations for this paper were carried out with gap
[GAP06].

3. The 31 easiest cases

We now consider the octic Galois groups G, i.e., the 50 conjugacy classes
of transitive subgroups of S8. In this section, we describe the results for 31
of these groups where the information in Section 2 is sufficient to compute
the inertia subgroup.



4 JOHN W. JONES

3.1. Knowing just G. For some groups, knowledge of G alone is sufficient
to determine the inertia subgroup I. For example, computing possible ram-
ification filtrations, one can quickly show that some groups cannot be the
Galois group of an octic 2-adic extension, namely: G = T37, T43, T45, T46,
T47, T48, T49, T50.

Some groups admit a unique filtration as described above. Not all of these
groups appear as Galois groups over Q2, but with a general 2-adic base field
in mind, we can still quickly give their inertia groups. These are listed in
Table 1.

Table 1. Inertia groups completely determined by the Ga-
lois group. Note, [12, 3] = A4 and [48, 50] = C4

2 : C3. The
group T39 does not appear as a Galois group over Q2.

G I G I G I G I

T14 [12, 3] T34 [48, 50] T40 T32 T42 [48, 50]
T23 T12 T36 T25 T41 T33 T44 T38

T24 T13 T39 T32

3.2. Groups where f and |I| suffices. The next simplest cases are those
where knowledge of G, f , and |I| suffices. These are summarized in Table 2.
Here, we write (|I|, f)∗ if the combination cannot occur for base field K =
Q2.

4. Remaining 19 cases

In all of the remaining cases, G is a 2-group. Certainly, if |I| = |G|, then
I = G. We henceforth assume I 6= G, in which case [G : I] = 2j with j ≥ 1.
In these cases, it is often helpful to be able to pinpoint quadratic subfields of
F̂ . We start by noting how to distinguish quadratic subfields coming from
D4 fields.

4.1. D4-quartics. Quartic fields K4 whose normal closure, K̂4, has Galois
group D4, play an important role in determining the remaining inertia sub-
groups. The octic field K̂4 has three quadratic fields which can be readily
distinguished. Figure 1 shows the full subfield diagram for K̂4. Here, Ksib

4

is a sibling of K4. Primes, as in K ′4, denote that the field is isomorphic to
another subfield, and the isomorphisms are explicitly noted. The subfield
K̂center is the fixed field of the center of D4.

Since we assume that we have access to subfields of an extension, we can
determine sub(K4), the quadratic subfield of K4, which we express for the
moment as K(

√
a). Second, we have the discriminant root field disc(K4) =

K(
√

disc(g4)) where g4(x) is a quartic polynomial defining K4. Finally, the
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Table 2. Groups where f and |I| suffice.

G (|I|, f) Inertia group
T1 (8, 1) T1

(4, 2) [4, 1] = C4

(2, 4) [2, 1] = C2

(1, 8) [1, 1] = C1

T3 (8, 1) T3

(4, 2) [4, 2] = V4

T5 (8, 1) T5

(4, 2) [4, 1] = C4

T7 (16, 1) T7

(8, 1) T1

(8, 2) [8, 2] = C4C2

(4, 2) [4, 1] = C4

(4, 4) [4, 2] = V4

T10 (16, 1) T10

(8, 1) T2

(8, 2) [8, 5] = C3
2

(4, 2|4) [4, 2] = V4

T12 (24, 1)∗ T12

(8, 1) T5

T13 (24, 1)∗ T13

(12, 2) [12, 3] = A4

(8, 1) T3

(4, 4) V4

G (|I|, f) Inertia group
T16 (32, 1) T16

(16, 1) T7

(16, 2) [16, 11] = D4C2

(8, 2|4) [8, 5] = C3
2

T20 (32, 1) T20

(16, 1) T10

(16, 2) [16, 2] = D4C2

(8, 2) [8, 2] = C4C2

(8, 4) [8, 5] = C3
2

T25 (56, 1)∗ T25

(8, 1) T3

T32 (96, 1)∗ T32

(32, 1) T22

T33 (96, 1)∗ T33

(48, 2) [48, 50]
(32, 1) T18

(16, 2) [16, 14] = C4
2

T38 (192, 1)∗ T38

(96, 1) T32

(64, 1) T31

(32, 1) T22

third quadratic subfield is rot(K4) := K(
√
a · disc(g4)). This last field is the

fixed field of the rotation in D4 in the Galois correspondence.
Note, if we start with the octic field K̂4, there is nothing to distinguish K4

from Ksib
4 . Group theoretically, this is because the corresponding subgroups

of D4 can be interchanged by an (outer) automorphism. For quadratic
subfields, one similarly cannot distinguish disc(K4) from sub(K4) based on
the octic field K̂4. However, the subfield rot(K4) can be distinguished from
these other two fields since rot(K4) = rot(Ksib

4 ). In one case below, we make
use of this fact, and set rot(K̂) = rot(K4), i.e., pick a quartic subfield which
is not Galois, and then compute its rotation field.

4.2. Applying D4-quartic subfields. In four cases, T4, T6, T8, and T9,
the octic extension F/K has a D4-quartic intermediate field K4, from which
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Figure 1. A D4 field and its subfields.

we can determine the inertia group, using also information as described
above. These cases are described by Table 3. The groups T4 and T9 each

Table 3. Inertia subgroups determined using a quartic sub-
field with normal closure D4. For each octic group, if the
specified quadratic subfield for the D4 is unramified, then
the inertia group is given. Information on (|I|, f) are only
given when needed. An entry of − means that combination
is not possible. In all cases, I = G is also a possibility.

G (|I|, f) Sub Disc. Rot. None
T4 [4, 2] = V4 [4, 2] = V4 [4, 1] = C4 −
T6 [8, 3] = D4 T4 T1 −
T8 [8, 3] = D4 T5 T1 −
T9 (8, 1) − T3 T2 T4

(8, 2) [8, 5] = C3
2 − − [8, 3] = D4

have two subfields which can play the role of K4; one can choose either when
applying Table 3.

4.3. Final group by group analysis. The remaining Galois groups, for
the most part, need to be treated separately. Recall that in all cases, we are
only considering where I is a proper subgroup of G.

Group T2
∼= C4C2: Here I 6= G implies that I is an intransitive subgroup

of G. If |I| = 2, then clearly I = [2, 1] = C2. Otherwise |I| = 4. The field
F has two C4 subfields, and one V4 subfield. The two C4 quartics have the
same quadratic subfield. If this is unramified, I = [4, 2] = V4. If one of the
other two quadratic subfields are unramified, I = [4, 1] = C4.

Group T11
∼= Q8 : C2: These fields are part of sibling sets of size 3. Starting

from one field, we can compute the other two by factoring gdisc(x) (see [JR]).
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We compute the sibling set and see how many of the three fields have residue
degree f = 2. This could be none, one, or two of the three siblings.

If none of them have f = 2, then I = T5; if only one does and it is not
the current field, then I = T2; if the other two have f = 2 but the current
field is totally ramified, then I = T4.

Now if the current field has f = 2 and it is the only one, I = [8, 2] ∼= C4C2.
If f = 2 and one other sibling has f = 2, then I = [8, 3] ∼= D4.

Group T15: We first look at the quartic D4-subfield of F , K4. If disc(K4)
is unramified, I = T11; if rot(K4) is unramified I = T7. Finally, if the
quadratic subfield of K4 is unramified, f = 2 and I = [16, 11] ∼= D4C2.

If none of the subfields of the D4 are unramified, then f = 1. We factor
gdisc(x) over K, where it will have factors of degrees 4, 8, and 16. We test
the degree 16 factor to see if it is totally ramified or not. If so, I = T8,
otherwise I = T6.

Group T17: First, if (|I|, f) = (16, 1), we consider disc(F ). If it is unrami-
fied, I = T11; otherwise I = T7.

If (|I|, f) = (8, 1), we factor gdisc(x) and take the degree 16 factor. It has
one octic and 3 quartic subfields. If one of the quartic subfields is unramified,
then I = T4; otherwise I = T5.

Finally, if f > 1 we have I = [16, 2] ∼= C2
4 .

Group T18
∼= C3

2 : C2
2 : Here if f > 1, then I = [16, 14] ∼= C4

2 . If f = 1, we
consider the three D4-quartic subfields of F . If the discriminant root field
of any of these is unramified (all three have to be checked), then I = T9,
otherwise I = T10.

Group T19, T20, and T21: These three Galois groups correspond to sibling
fields. One can repeatedly compute and factor the resolvent gdisc(x) to start
with one field and compute the full sibling set, which consists of two T19

fields, and one each of a T20 and a T21 (see [JR]). Note that T20 appears
above in Table 2.

For T19, if (|I|, f) = (16, 1) we consider a D4-quartic subfield K4. If
disc(K4) is unramified, I = T9; otherwise rot(K4) is unramified and I = T10.
On the other hand, if (|I|, f) = (16, 2), then I = [16, 3] ∼= (C4C2) : C2. The
only remaining cases have (|I|, f) = (8, 1), in which case we consider the T20

sibling. Either the octic T20 field is totally ramified, in which case I = T2,
or it has residue field degree of 4 in which case I = T3.

For T21, all possibilities have f > 1 so we are only identifying I as an
abstract group. So, we compute the inertia subgroup of a any sibling T19

or T20 field, and use that abstract group for I.

Group T22: If (|I|, f) = (16, 2), then I = [16, 11] ∼= D4C2. Otherwise,
(|I|, f) = (16, 1). The resolvent gdisc(x) will have three octic factors. If
any of them residue degree greater than 1, I = T9; if all three are totally
ramified, I = T11. Note, these octic factors of gdisc(x) define sibling T22

fields. They are part of a sibling set of size 6. We also note that T22 does
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not occur over Q2 because the Galois closure has 15 quadratic subfields, and
Q2 has only 7 quadratic extensions.

Group T26: If (|I|, f) = (32, 2), then I = [32, 34] = C2
4 : C2. Otherwise

f = 1 and we consider K4, a D4-quartic subfield. If disc(K4) is unramified,
I = T22, and if rot(K4) is unramified, I = T16.

If neither is unramified, then we compute the octic resolvent f8(x), which
will be a T18 field. Let I18 denoted its inertia subgroup. If I18 = T10, then
I = T17, and otherwise I = T15.

Group T27: Here, we have a simple chart based on |I|, f , and disc(F ).

(|I|, f) = (32, 2) =⇒ I = [32, 27] ∼= C4
2 : C2

(|I|, f) = (16, 2) =⇒ I = [16, 3] ∼= (C4C2) : C2

(|I|, f) = (16, 4) =⇒ I = [16, 14] ∼= C4
2

(|I|, f) = (32, 1) and disc(F ) is unram. =⇒ I = T20

(|I|, f) = (32, 1) and disc(F ) is ram. =⇒ I = T16

Group T28: Some cases are easy to distinguish.

(|I|, f) = (32, 1) and rot(K4) is unram. =⇒ I = T16

(|I|, f) = (32, 1) and disc(K4) is unram. =⇒ I = T21

(|I|, f) = (32, 2) =⇒ I = [32, 27] ∼= C4
2 : C2

The remaining cases have (|I|, f) = (16, 2). Octic fields with Galois group
T28 have T27 siblings which can be computed by factoring a degree 35 re-
solvent (see [JR]). In that case we compute a T27 sibling and read off the
answer for that field as an abstract group.

Group T29: The group T29 has six normal subgroups N such that T29/N ∼=
D4. The six corresponding octic D4-fields come in three pairs. Each pair
shares the same three quadratic subfields. From the point of view of an octic
D4 field E8, the only quadratic field which is distinguished is rot(E8). For
each of the three pairs of octic D4 fields, E8,a and E8,b, it turns out that
rot(E8,a) = rot(E8,b).

With a T29 octic field, its quartic subfield K4 gives us access to one D4

field in the Galois closure. We compute a representative from each of the
other two pairs by factoring the octic resolvent f8(x) of [JR]. Denote these
quartic fields by K ′4 and K ′′4 .

Now, if (|I|, f) = (32, 2), then I = [32, 27] ∼= C4
2 : C2. Otherwise,

(|I|, f) = (32, 1). We distinguish these as follows

disc(K4) is unram. =⇒ I = T22

rot(K4) is unram. =⇒ I = T20

neither rot(K ′4) nor rot(K ′′4 ) is unram. =⇒ I = T18

rot(K ′4) is unram. or rot(K ′′4 ) is unram. =⇒ I = T19
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Group T30: These fields have an D4-quartic subfield K4. Note, for a T30

octic field F , it is always the case that disc(F ) = rot(K4). If |I| = 32 and
f = 2, then I = [32, 34] ∼= C2

4 : C2. If |I| = 32 and f = 1, then I = T20

when disc(F ) is unramified, and I = T21 when disc(K4) is unramified.
The remaining cases have (|I|, f) = (16, 2). We factor f8(x), the octic

resolvent from [JR], which necessarily has Galois group T19. We compute
the inertia subgroup I19 for this T19 field. If I19

∼= [8, 2] ∼= C4C2, then
I = [16, 2]; if I19

∼= [8, 5] ∼= C3
2 , then I = [16, 11]. Ultimately, determining

I19 will lead us to its T20 sibling, and the distinction is made by the residue
field degree of that octic field.

Group T31: This case is simple, where the only extra piece of data to
compute is disc(F ).

(|I|, f) = (32, 2) =⇒ I = [32, 27] ∼= C4
2 : C2

(|I|, f) = (32, 1) and disc(F ) is unram. =⇒ I = T22

(|I|, f) = (32, 1) and disc(F ) is ram. =⇒ I = T21

Group T35: The splitting field of a T35 polynomial contains 7 quadratic
subfields. It turns out that when I 6= T35, there are 7 possibilities for
the inertia group of the extension, and they correspond to which of these
7 quadratic subfields is unramified. We present the correspondence in a
table based on F , a D4 subfield K4, and utilizing the following notation for
quadratic extensions: K(

√
a) ∗K(

√
b) := K(

√
ab).

(|I|, f) Unramified quadratic field I

(64, 1) disc(F ) ∗ disc(K4) T26

(64, 1) rot(K4) T27

(64, 1) disc(F ) ∗ sub(K4) T28

(64, 1) disc(F ) T29

(64, 1) disc(F ) ∗ rot(K4) T30

(64, 1) disc(K4) T31

(64, 2) sub(K4) [64, 226] ∼= D2
4

That completes the results for all 50 octic Galois groups.
Since [JR04b] contains a representative of each isomorphism class of oc-

tic extensions of Q2, we effectively now have a second efficient approach to
computing octic inertia groups over Q2, namely to use [JR04b] to match an
octic extension with an entry in its database and simply read off the corre-
sponding inertia subgroup. However, the ability to find inertia subgroups in
this manner is predicated on the results given here.
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