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Abstract. We apply class field theory to compute complete tables of number

fields with Galois root discriminant less than 8πeγ . This includes all solvable
Galois groups which appear in degree less than 10, groups of order less than

24, and all dihedral groups Dp where p is prime.

Many people have studied questions of constructing complete lists of number
fields subject to conditions on degree and possibly Galois group, with a goal of
determining complete lists of such fields with discriminant less than a fixed bound.
This study can be phrased in those terms, with the principle distinction being that
our discriminant bounds apply to Galois fields, rather than to particular stem fields.

For a finite group G and bound B > 0, let K(G,B) be the set of number fields in
C which are Galois over Q and which have root discriminant ≤ B. It is a classical
theorem that each set K(G,B) is finite. The first author and Roberts [JR07a]
considered these sets with B = Ω = 8πeγ ≈ 44.7632, a constant introduced by
Serre [Ser86]. They conjecture that there are only finitely many such fields in the
union of the K(G,Ω), with G running through all finite groups. They determine
all sets K(A,Ω) where A is an abelian group, and most sets K(G,Ω) for groups G
which appear as Galois groups of irreducible polynomials of degree at most 6. Here
we extend those results using class field theory. We complete their study of Galois
groups which appear in degree 6, all solvable extensions in degrees 7–9, as well as
for all groups G with |G| ≤ 23. Finally, we determine the sets K(D`,Ω) where ` is
an odd prime.

The primary theoretical difficulty in carrying out these computations is to deduce
bounds which effectively screen out conductors for our extensions. Section 1 sets
notation and describes some of the methods used before Section 2 addresses this
question, and describes our overall process. Section 3 summarizes the results of our
computations.

1. Notation and Conventions

1.1. Groups. We let Cn denote the cyclic group of order n, and Dn the dihedral
group of order 2n. Direct products are indicated by juxtaposition, so G1 ×G2 will
be denoted by simply G1G2, and G1 × G1 will be written G2

1. Many groups will
be semidirect products, and N : H will denote a semidirect product with normal
subgroup N and complimentary subgroup H. We will write G1 : G2 : G3 to mean
(G1 : G2) : G3. If H ≤ Sn, then the wreath product is denoted G oH ∼= Gn : H.
An extension of G1 by G2 will be denoted by G1.G2.
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We always try to use notation which indicates the structure of the group. How-
ever, to avoid ambiguity, particularly for group extensions and semidirect products,
we also make use of two standard group numberings. For Galois groups, we also
use the notation nTd to denote the dth transitive subgroup of Sn in the numbering
of [BM83, CHM98]. For small groups, at times we use the numbering system em-
ployed by the small group library of gap [GAP06]. In this case, a group denoted
[n, k] is produced in gap by SmallGroup(n,k). So, D7 = C7 : C2 = 7T2 = [14, 1].

1.2. Discriminants. For an extension L/K of number fields, we write DL/K for
the discriminant ideal of the relative extension. For absolute extensions K/Q, we

write dK for a positive generator of DK/Q. If [K : Q] = n, then rd(K) = d
1/n
K

denotes the root discriminant of K. Finally, we let Kgal denote a normal closure
for K/Q, and define the Galois root discriminant for K/Q to be grd(K) = rd(Kgal).

Also, for a number field K, we will denote its ring of integers by OK .

1.3. Sibling fields. Number fields F1, F2 ⊆ C are sibling fields if they have the
same Galois closure in C. Sibling fields need not have the same degree. For example,
any field is always a sibling of its own Galois closure. On the other hand, siblings
might have the same degree and yet be non-isomorphic. The first case of this
phenomenon occurs with quartic D4 fields.

When we represent fields by irreducible polynomials, we can have sibling fields
defined by polynomials f1 and f2 of the same degree, so Gal(f1) ∼= Gal(f2), but
where the Galois groups do not have the same T -number. This first happens in
degree 6 where 6T7 ∼= 6T8 ∼= S4.

2. Discriminant bounds

Let Q ⊆ K ⊆ L, with n = [L : K] and m = [K : Q]. Then, as is well-known,

(1) Dn
K/QNK/Q(DL/K) = DL/Q

where NK/Q denotes the ideal norm. In particular,

(2) rd(K) ≤ rd(K) Nm(DL/K)1/(nm) = rd(L) .

Here, Nm(I) denotes the numeric norm of an ideal I. Applied to K ⊆ Kgal, we
have rd(K) ≤ grd(K), and applied to Kgal ⊆ Lgal gives grd(K) ≤ grd(L).

Throughout, we assume we have a fixed base field K, which may not be Galois
over Q, and a bound B such that grd(K) ≤ B. We consider abelian extensions
L/K such that grd(L) ≤ B, and wish to determine restrictions on the conductors
for L/K. We use the class field theory functions in gp [PAR00], and consequently,
the extensions L/K are required to be not just abelian, but cyclic of prime order.
This does not pose a serious problem for the computations. We now fix ` to be
prime such that Gal(L/K) ∼= C`.

2.1. Root discriminants. If f is the conductor for L/K, we let f0 denote its finite

part. By the conductor-discriminant formula, DL/K = f`−10 , and so by equation (2),

rd(L) = rd(K)(NK/Q(f0))
`−1
[L:Q] .

This can be rephrased as bound on the conductor of an extension, which we will
refer to this as the root discriminant test for conductors.
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Proposition 2.1. If K is a degree n number field, L/K is a C` extension with
finite conductor f0 and rd(L) ≤ B for some bound B, then

NK/Q(f0) ≤
(

B

rd(K)

)n`/(`−1)
.

2.2. Galois root discriminants. We have the stronger requirement grd(L) ≤ B
and use this to further restrict the list of conductors. For the base field K, we
encode some basic information for computing grd(K), which we describe now.

For each prime p which ramifies in K, let Fp be the completion of Kgal at
a prime above p; then Fp/Qp is a Galois extension. Let G = Gal(Fp/Qp) and
Gi denote its higher ramification groups with the standard upper numbering of
[Ser79]. For each i ≥ −1, let Gi+ = ∪ε>0G

i+ε, so i is a jump in the filtration if
and only if Gi 6= Gi+. Let t = [G0 : G0+] = [G0 : G1], which is the degree of the
maximal tame totally ramified subextension of Fp/Qp. If i > 0 is a jump in the
filtration of higher ramification groups Gj , we refer to s = i+ 1 as a wild slope and
define its multiplicity m by [Gs−1 : G(s−1)+] = pm. We then define the p-Galois
slope content for K to be the slope content of Fp/Qp, which in turn is given by
GSCp(K) = [s1, s2, . . . , sk]t where the si are wild slopes listed so that si ≤ si+1

and each slope s is repeated m times where m is the multiplicity described above.
Based on the factorization of the discriminant of Kgal, we have

grd(K) =
∏
p

pαp

for rational numbers αp. These can be computed from GSCp(K) by the following
formula (see [Jon]).

(3) αp =
t− 1

pkt
+

k∑
j=1

(
1

pk−j
− 1

pk−j+1

)
sj

We first obtain a lower bound on tame degree of GSCp(L) for a prime p 6= `.
Here, if e is a positive integer and p is a prime with e = pje′ and p - e′, then we
refer to e′ as the prime to p-part of e.

Proposition 2.2. Suppose K is a degree n number field, L/K is a C` extension,
and p is a prime different from `. Let tK (resp. tL) denote the tame degree for p
of Kgal (resp. Lgal),

∏g
i=1 p

ei
i be the factorization of pOK , and for each ei, let e′i

be its prime to p-part. If pi divides the conductor for L/K, then

lcm(tK , `e
′
i) | tL .

Proof. Since Kgal ⊆ Lgal, we have tK | tL. Since pi divides the conductor and
L/K is Galois of prime degree, pi it totally ramified in L/K. Thus, e′i` divides
the ramification index of a prime in OL above p, and consequently it divides the
corresponding ramification index for a prime of OLgal above p. Since e′i` is prime
to p, it divides tL. �

If p = `, then the contribution of p to grd(L) is more subtle. Under certain
conditions, we may be able to deduce that GSCp(L) contains an additional wild
slope when compared with GSCp(K). We first define a partial ordering for slope
contents from [Jon].
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Definition 2.3. For two slope contents β = [s1, . . . , sk]t and β′ = [s′1, . . . , s
′
n]t′

associated to a prime p, then β ≤ β′ if the following three conditions hold:

(1) k ≤ n,
(2) sk−i ≤ s′n−i for 0 ≤ i < k,

(3) t ≤ pn−kt′.

It follows easily from equation (3) that β ≤ β′ implies the corresponding inequal-
ity on Galois root discriminant exponents.

In general, if E/Qp is a finite extension, its discriminant ideal is of the form
(pcE ) for some cE ≥ 0. If we embed E in a finite Galois extension F/Qp with
Galois group G, then

(4) cE =
∑
i≥−1

([G : HGi+]− [G : HGi])(i+ 1)

(see [Jon]). The non-zero terms of the sum come from the finitely many values i
such that HGi+ 6= HGi. In particular, for these values Gi+ 6= Gi, so these are a
subset of the jumps in the filtration of higher ramification groups. Those where
i > 0 correspond to wild slopes. We note that the sum (4) is independent of which
Galois field F is used, which is essentially a consequence of Herbrand’s theorem.

Proposition 2.4. Let p be a prime and L/K is a Cp extension of number fields
with conductor f. Suppose p is a prime of K above p such that p | f. Let GSCp(K) =
[s1, . . . , sm]t, D be the different for K/Q, e be the ramification index for p for K/Q,
and vp the valuation for p. Finally, let

s =
vp(D) + vp(f)

e

If s > sm, then [s1, . . . , sm, s]t ≤ GSCp(L).

Proof. First we note that Kgal ⊆ Lgal implies the corresponding inclusion for their
completions with respect to a prime above p. So, GSCp(K) ≤ GSCp(L) where each
wild slope for K is a wild slope for L whose multiplicity in GSCp(K) is less than or
equal to its multiplicity for GSCp(L). So, it suffices to show that GSCp(L) contains
an additional slope ≥ s.

Since L/K is Galois of prime order and p | f, p is totally ramified in L/K. Let P
be the prime of OL above p, E′ be the completion of L at P, and E be the closure
of K in E′. Let F be the Galois closure for E′/Qp, G = Gal(F/Qp), and H and
H ′ be the subgroups of G corresponding to E and E′ respectively.

Let f be the residue field degree for p. Then, cE = fvp(D), and from the local
analog of equation (1) we have

c′E = pcE + f(p− 1)vp(f) = pfvp(D) + f(p− 1)vp(f) .

So,

cE′ − cE
[E′ : Qp]− [E : Qp]

=
pfvp(D) + f(p− 1)vp(f)− fvp(D)

pef − ef

=
f(p− 1)vp(D) + f(p− 1)vp(f)

f(p− 1)e

=
vp(D) + vp(f)

e
= s
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Now we compute the same quantity in terms of higher ramification groups using
equation (4). Note that since F is the Galois closure of E′/Qp and E′ is the
completion of L at P, the jumps in the higher ramification groups Gi when i > 0
correspond to the wild slopes in GSCp(L).

s =
cE′ − cE

[E′ : Qp]− [E : Qp]

=
∑
i≥−1

[G : H ′Gi+]− [G : H ′Gi]−
(
[G : HGi+]− [G : HGi]

)
[E′ : Qp]− [E : Qp]

(i+ 1)

=
∑
i≥−1

[G : H ′Gi+]− [G : HGi+]−
(
[G : H ′Gi]− [G : HGi]

)
[G : H ′]− [G : H]

(i+ 1)

=
∑
i≥−1

(
[G : H ′Gi+]− [G : HGi+]

[G : H ′]− [G : H]
− [G : H ′Gi]− [G : HGi]

[G : H ′]− [G : H]

)
(i+ 1)

Without the factors i+ 1 (but keeping it a finite sum over the higher ramification
filtration jumps), the sum telescopes and reduces to 1, so this is a weighted average
of the values i+ 1. So, if s > sm, then F = (E′)gal has a new slope greater than or
equal to s. �

Applying the results of Propositions 2.2 and 2.4 to a modulus f, combined with
information about the slope content for K, we obtain a lower bound on the slope
content of L. Then, using equation (4), we can compute a lower bound for grd(L)
and check if it is ≤ B. We refer to this as the grd test for conductors.

2.3. Galois subfields. Finally, we consider the case where L/Q and K/Q are
both Galois extensions. While this is not general by any means, it occurs frequently
enough to warrant special attention since we get an easy restriction on the list of
potential conductors.

For a number field K/Q and p, a non-zero prime ideal of OK , we define N ′K/Q(p)

to be the product of the distinct primes of OK above p ∩ Z.

Proposition 2.5. Let f be the conductor of L/K and p be a prime number. Suppose
K/Q is a Galois extension, L/K is Abelian and L/Q is Galois. If there exists a
prime ideal, p over p such that pj | f for some j > 0, then N ′K/Q(p)j | f.

Proof. Since L/Q and K/Q are Galois, f0 is stable under the action of Gal(L/Q).
But Gal(L/Q) acts through Gal(K/Q). So, if pj | f for some prime p of OK , then
σ(p)j | f for all σ ∈ Gal(K/Q). Since Gal(K/Q) acts transitively on primes above
p ∩ Z, N ′K/Q(p)j | f. �

When Proposition 2.5 applies, the grd test for conductors is of no use. Since K
and L are both Galois over Q, their root discriminants coincide with their Galois
root discriminants. In this sense, Proposition 2.5 and the grd test for conductors
are complementary.

2.4. Procedure. Here we outline the procedure used in the computations below.
Let G be a finite group, and B > 0. We wish to determine K(G,B). By the Galois
correspondence, we can describe what is needed in group theoretic language. We
need subgroups H1 ≤ H2 ≤ G where Core(H1) = 〈e〉, H1 C H2, H2/H1

∼= C` for
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some prime `. Here, the core of a subgroup is the intersection of its conjugates.
Then, for each field K which is a sibling of Kgal ∈ K(G/Core(H2), B), we find all
C` extensions L. This list will include a complete list of sibling fields for K(G,B).

So, let K be a number field with grd(K) ≤ B, and ` a prime. We wish to find
all C` extensions L/K such that grd(L) ≤ B and Gal(Lgal/Q) ∼= G. We do this in
six stages:

(1) generate a list of possible moduli f
(2) compute the field for each congruence subgroup with modulus f correspond-

ing to a C` extension
(3) use Frobenius filtering to remove some polynomials with the wrong Galois

group
(4) compute low degree siblings L′ for the fields L
(5) filter out fields L′ which fail the conditions on their Galois root discrimi-

nants or Galois groups
(6) remove duplicates

Everything except stages 1 and 3 is fairly straightforward. In particular, stage 2
uses class field theory commands built into gp. Stage 4 involves computing re-
solvents and subfields, with the details varying from case to case. In stage 5, we
compute Galois groups with gp. Galois root discriminants are computed using pro-
grams of the first author developed for [JR07a]. Finally, stage 6 is straightforward
using gp.

Frobenius filtering is discussed below. For stage 1, we note that if p ramifies in
L, then the minimum contribution of p to grd(L) is

√
p. Thus, we start with the

following set of primes:

SQ =

{
p

∣∣∣∣∣ p ≤
(

B

grd(K)

)2

or p | dK

}
.

For prime ideals p of OK , we let

SK =

{
{N ′(p) | p ∩ Z ∈ SQ} if L/Q andK/Q are Galois

{p | p ∩ Z ∈ SQ} otherwise.

We build a list of potential conductors, starting with the one element list L = (OK).
For each ideal I ∈ SK and each ideal J from the list L, we consider the products IkJ
where k = 1 if the prime p ∈ I is different from `, and 2 ≤ k ≤ b`e(p/`)/(`−1)c+ 1
otherwise. If the ideal IkJ passes both the root discriminant test and the Galois
root discriminant tests, it is appended to L.

Once we have exhausted SK , we test each potential conductor f ∈ L and ram-
ification type at infinity and keep only those for which there exists a congruence
subgroup C with conductor f corresponding to at least one C` extension of K. This
completes stage 1.

We note that the definition of the set SK makes use of grd(K). So, in cases
where K is not Galois over Q, the use of Galois root discriminants is utilized at an
early stage of the computation.

2.5. Frobenius Filtering. In stage 3, we want to quickly filter out polynomi-
als which have the wrong Galois group. We employed the following well-known
technique, which we refer to as Frobenius filtering.
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Given a separable degree n monic polynomial f ∈ Z[x], one can factor f over
Fp. If p - disc(f), then the degrees of the irreducible factors give the cycle type for

the Frobenius automorphism in Gal(Fp/Fp) acting on the roots of f . This lifts to
an element Frobp ∈ Gal(f) with the same cycle type. The lifting is well-defined up
to conjugation, hence its cycle type is well-defined. So, one can often quickly prove
that Gal(f) is not conjugate to some fixed group G ≤ Sn if the factorization of f
over Fp (for some p - disc(f)) does not yield a cycle type of an element of G.

For each polynomial, we tested up to 1000 primes p such that p - disc(f). Natu-
rally, if we find one such prime which proves that f has the wrong Galois group, we
do not need to test f any further. It is possible that a polynomial is not eliminated
by Frobenius filtering and still have Gal(f) not conjugate to G. We eliminate such
polynomials in stage 5.

2.6. Representing fields, siblings, and Frobenius elements. For a given Ga-
lois field K ∈ K(G,Ω) for some group G, we represent the field as the splitting field
of an irreducible polynomial of as small degree n as possible. Sometimes, there will
be several degree n siblings for a given field K, and so we find a representative poly-
nomial for each. The website [JR07b] gives these polynomials, and for printable
tables for the fields, sibling fields are grouped together.

In most cases, we generate sibling fields by means of resolvents. In a few cases,
we did not find a convenient resolvent. Our computations would necessarily find
complete sibling sets if one, hence all siblings, meet the grd bound. Matching
siblings then becomes a process of elimination. For this, we use the discriminant of
the Galois field and Frobenius elements.

The use of discriminants is clear. For Frobenius elements, we observe that the
cycle type of a Frobenius element Frobp determines the order of Frobp as a group
element: it is the least common multiple of the cycle lengths. While the cycle types
of Frobp may vary for sibling fields, |Frobp| does not. Hence, these orders match
for sibling fields.

When matching siblings we compute the vector

(Dgal
L , |Frob2|, |Frob3|, . . . , |Frob541|),

which uses the first 100 primes. If a prime p divides the polynomial discriminant but
not the field discriminant, we use gp to compute residue field degrees, which in turn
gives |Frobp|. If a prime p divides dK , we use 0 in place of |Frobp|. The resulting
vector then provides a reliable fingerprint of the splitting field of a polynomial where
two polynomials with different fingerprints cannot be siblings. By the completeness
of our search, and knowing how many siblings to expect, we can then match siblings
by this method. In cases where 100 primes were insufficient, we simply repeated
the computation using more Frobenius elements.

3. Results

We applied the procedure outlined above to determine K(G,Ω) for many specific
groups G and Ω = 8πeγ ≈ 44.7632 as in [JR07a]. Below, we give the number of
fields in each case, along with a few notes the computations. Complete lists of fields
are given at [JR07b].
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3.1. Sextics. In [JR07a], Jones and Roberts determined K(G,Ω) for 14 of the 16
Galois groups in degree 6. For the remaining two groups they found fields with
Galois groups C2

3 : C4 and C2
3 : D4; however, the methods employed did not prove

that these two lists were complete. Here, we do so.

Proposition 3.1. |K(C2
3 : C4,Ω)| = 17 and |K(C2

3 : C4,Ω)| = 137.

Both computations involve ` = 3 for a C3 extension of a quartic field. For
G = C2

3 : C4 (resp. G = C2
3 : D4), a Galois field has a degree 12 sibling which

contains a sextic sibling as a subfield. We first compute the degree 12 fields as C3

extensions of a quartic C4 (resp. quartic D4) field.
To get a feel for the steps in the computation, we give some details on determining

K(C2
3 : C4,Ω). There are 228 fields in K(C4,Ω). If we use only the root discriminant

test to screen potential moduli, we found 335 moduli. When we use both the
root discriminant test and the Galois root discriminant test, we found 133 moduli.
From the 133 moduli, there are 293 modulus/congruence subgroup pairs. After
computing polynomials, Frobenius filtering reduced the number to 80. Taking
resolvents and removing duplicates, yielded 40 distinct sextic fields. All had the
right Galois group, and 34 satisfied grd(L) ≤ Ω. Each Galois field gives rise to two
such (sibling) sextic fields, so the number of C2

3 : C4 Galois fields is 17.

3.2. Septics. There are four solvable Galois groups that appear in degree 7, viz.
C7, D7 = C7 : C2, C7 : C3, and F7 = C7 : C6. Naturally, the group C7, being
abelian, is handled by [JR07a]. We treat the remaining three groups here.

Proposition 3.2. |K(D7,Ω)| = 80, |K(C7 : C3,Ω)| = 2, and |K(F7,Ω)| = 94.

Note, each group is of the form C7 : Cd where d | 6. We compute these fields by
looking for C7 extensions of a Cd field. Section 2.3 applies, which shortens the list
of potential conductors. The sets K(Cd,Ω) were known from [JR07b].

The resulting fields have degrees 14, 21, and 42. The greatest computational
difficulties naturally arose for the C7 : C6 fields. Here, even computing the degree
42 polynomials seemed too slow. However, given a Cd field and a modulus f, we have
enough information to specify ramification information for the corresponding degree
7 field. Since the groups C7 : Cd are Frobenius groups, we can apply the following
proposition of Fieker and Klüners [FK03]. We have specialized the notation to
match the situation considered here.

Proposition 3.3 (Fieker, Klüners). Let ` be prime, d | `−1, and K a Cd extension
of Q. Further, suppose L is a C` : Cd extension of Q containing K, and p a prime.
Finally, let F be a degree ` extension of Q with L as its Galois closure. Then

dF = d
(`−1)/d
K Nm(DL/K)1/d

In [JR03], the first author and Roberts give a method known as a targeted Hunter
search for searching for primitive number fields with prescribed ramification. Using
Proposition 3.3, we employed such searches to find some of the C7 : C6 septics.

We note that while Proposition 3.3 gives us discriminant information, one can
determine more refined information for the local algebras F⊗Qp. This information,
in turn, could be fed into the machinery of the targeted Hunter search making it
more efficient.

Finally, when conducting the targeted Hunter search, one need not wait for the
search to complete. One knows beforehand how many fields to expect from class
field theory.
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3.3. Octics. Here we consider the solvable groups which appear as transitive sub-
groups of S8, and represent corresponding Galois extensions as the splitting fields of
irreducible degree 8 polynomials. We omit groups which appear as Galois groups
of lower degree irreducible polynomials since they have already been treated in
[JR07a].

Proposition 3.4. For solvable groups which appear as Galois groups of irreducible
octics where the octic field has a quartic subfield, we have the following.

G |K(G,Ω)| G |K(G,Ω)|
8T5 = Q8 7 8T27 = C4

2 : C4 80
8T6 = D8 354 8T29 = C3

2 : D4 229
8T7 = C8 : C2 55 8T30 = C4

2 : C4 35
8T8 = QD16 121 8T32 = C3

2 : A4 8
8T9 = D4C2 1477 8T33 = C3

2 : A4 12
8T10 = (C4C2) : C2 310 8T34 = C4

2 : S3 55
8T11 = (C4C2) : C2 307 8T35 = D2

4 : C2 183
8T12 = SL2(3) 4 8T36 = C3

2 : (C7 : C3) 4
8T15 = (D4C2) : C2 818 8T38 = C4

2 : A4 23
8T16 = 8T7 : C2 38 8T39 = C3

2 : S4 14
8T17 = C2

4 : C2 126 8T40 = Q8 : S4 49
8T18 = C4

2 : C2 318 8T41 = C2
3 : S4 111

8T19 = C3
2 : C4 110 8T42 = A4 o C2 9

8T22 = (D4C2) : C2 147 8T44 = C4
2 .S4 84

8T23 = GL2(3) 194 8T45 = A2
4 : C2

2 39
8T25 = C3

2 : C7 1 8T46 = A2
4 : C4 0

8T26 = C2
4 : C2 : C2 210 8T47 = S2

4 o C2 15

The simplest cases are when the octic field contains a quadratic subfield. This
accounts for most of the solvable octic groups. For octic fields which have a qua-
dratic, but no quartic subfield, the octic has a degree 12 sibling, which in turn is a
quadratic extension of a sextic field. Finally, there are two solvable primitive octic
groups: 8T25 = C3

2 : C7 and 8T36 = C3
2 : (C7 : C3). In both cases, the octic field

has a degree 14 sibling which is a quadratic extension of a septic field. The septic
fields, having Galois groups C7 or C7 : C3 have already been determined by [JR07b]
and §3.2 above.

3.4. Nonics.
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Proposition 3.5. For solvable groups which appear as Galois groups of irreducible
nonics, we have the following.

G |K(G,Ω)| G |K(G,Ω)|
9T3 = D9 105 9T20 = C3 o S3 10
9T5 = C2

3 : C2 48 9T21 = C3
3 : S3 42

9T6 = C9 : C3 2 9T22 = C2
3 : C3 : S3 17

9T7 = C2
3 : C3 0 9T23 = C2

3 : SL2(F3) 0
9T10 = C9 : C6 69 9T24 = C2

3 : C3 : D6 37
9T11 = C2

3 : C6 = 9T13 64 9T25 = C3
3 : A4 4

9T12 = C2
3 : S3 37 9T26 = C2

3 : GL2(F3) 51
9T14 = C2

3 : Q8 2 9T28 = S3 o C3 7
9T15 = C2

3 : C8 3 9T29 = C3
3 : S4 2

9T17 = C3 o C3 0 9T30 = C3
3 : S4 35

9T18 = C2
3 : D6 145 9T31 = S3 o S3 15

9T19 = C2
3 : QD16 33

The simplest case is where the nonic field has nontrivial automorphisms. Then
it can be computed as the C3 extension of a cubic field. If the nonic has a cubic
subfield but no nontrivial automorphisms, it must be an S3 cubic extension of the
subfield. In this case, we can first find the C3 extensions of the appropriate sextic
fields. This gives a degree 18 field which has the desired nonic as a subfield.

The last case consists of primitive nonics. In each case here, one computes degree
24 fields as C3 extensions of the appropriate octic field. This has a degree 12 subfield
which is a sibling of the desired field. We then use resolvents to go from the dodecic
sibling to the nonic field.

3.5. Small Groups. Combining previous results above with those of [JR07a], the
sets K(G,Ω) are classified for all finite groups G with |G| ≤ 11. Here we extend
the list to all groups G with |G| ≤ 23. The results are given in Table 1.

Most of these computations are straightforward since in most cases, we are com-
puting the full Galois field (since groups with faithful transitive permutation rep-
resentations of degree < 10 have already been dealt with).

It is interesting to look a little more closely at cases where K(G,Ω) = ∅. The
smallest such group is the generalized quaternion group Q16 of order 16. This group
has a D4 quotient, and |K(D4,Ω)| = 1408 which is fairly large. Thus, it is at first
a bit surprising that K(Q16,Ω) = ∅. However, the obstructions to an octic D4 field
being embedded in a Q16 are fairly restrictive [Sch89], with only 31 fields passing
the lifting criterion. Of those, none of the lifts fit under the root discriminant bound
Ω.

The groups C17 and C19 are less surprising since the fields are cyclotomic, and
Cp fields are highly ramified, and ramified at primes ≥ p.

The last group in Table 1 for which K(G,Ω) is empty is G = C10.C2. Such a
field is a compositum of a C4 field and a D5 field which share a common quadratic
field. There are only a few such pairs to start with, and none lead to a field which
fit under our chosen root discriminant bound.

3.6. Dihedral Fields. In [JR07a], the first author and Roberts determine all
abelian groups A such that K(A,Ω) is non-empty. Here, we consider the analo-
gous question for the most accessible non-abelian groups, the dihedral groups D`
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Table 1. Sizes |K(G,Ω)| for all groups with |G| ≤ 19. Groups are
listed by a descriptive name, and by their small group number from
gap.

G # G # G # G #

C2 [2, 1] 1220 D5 [10, 1] 146 C4 : C4 [16, 4] 11 C2
3 : C2 [18, 4] 48

C3 [3, 1] 47 C10 [10, 2] 69 C8C2 [16, 5] 30 C6C3 [18, 5] 19
C4 [4, 1] 228 C11 [11, 1] 1 C8 : C2 [16, 6] 55 C19 [19, 1] 0
C2

2 [4, 2] 2421 C3 : C4 [12, 1] 15 D8 [16, 7] 354 C10.C2 [20, 1] 0
C5 [5, 1] 7 C12 [12, 2] 66 QD16 [16, 8] 121 C20 [20, 2] 8
S3 [6, 1] 610 A4 [12, 3] 59 Q16 [16, 9] 0 C5 : C4 [20, 3] 102
C6 [6, 2] 399 D6 [12, 4] 1795 C4C

2
2 [16, 10] 195 D10 [20, 4] 384

C7 [7, 1] 4 C6C2 [12, 5] 391 D4C2 [16, 11] 1477 C10C2 [20, 5] 56
C8 [8, 1] 23 C13 [13, 1] 1 Q8C2 [16, 12] 7 C7 : C3 [21, 1] 2
C4C2 [8, 2] 581 D7 [14, 1] 80 Q8 : C2 [16, 13] 307 C21 [21, 2] 2
D4 [8, 3] 1425 C14 [14, 2] 8 C4

2 [16, 14] 16 D11 [22, 1] 32
Q8 [8, 4] 7 C15 [15, 1] 4 C17 [17, 1] 0 C22 [22, 2] 7
C3

2 [8, 5] 908 C16 [16, 1] 9 D9 [18, 1] 105 C23 [23, 1] 1
C9 [9, 1] 3 C2

4 [16, 2] 16 C18 [18, 2] 24
C2

3 [9, 2] 9 C2
2 : C4 [16, 3] 310 S3C3 [18, 3] 254

where ` is an odd prime. We show that
⋃
`

K(D`,Ω) is a finite set, and exactly

which primes ` contribute.

Proposition 3.6. For all odd primes ` > 43, K(D`,Ω) = ∅. Moreover,

|K(D3,Ω)| = 610 |K(D5,Ω)| = 146 |K(D7,Ω)| = 80
|K(D11,Ω)| = 32 |K(D13,Ω)| = 18 |K(D17,Ω)| = 10
|K(D19,Ω)| = 9 |K(D23,Ω)| = 8 |K(D29,Ω)| = 1
|K(D31,Ω)| = 2 |K(D37,Ω)| = 1 |K(D41,Ω)| = 1
|K(D43,Ω)| = 1

Proof. If L ∈ K(D`,Ω), then L contains a quadratic field K ∈ K(C2,Ω), and
Gal(L/K) ∼= C`. If L/K is unramified, then ` divides the class number of K. There
are finitely many fields K ∈ K(C2,Ω), so it is not hard to check that this happens
exactly when ` ≤ 43 (for ` an odd prime). In each such case, the corresponding
extension L/Q would have to be Galois of order 2`, and not abelian. Hence it
is dihedral. Since L/K is unramified, rd(L) = rd(K) ≤ Ω, so L ∈ K(D`,Ω).
Moreover, we carried out the computation of the sets K(D`,Ω) for ` ≤ 23 (including
cases of non-trivial conductors) to obtain the counts given.

It remains to show K(D`,Ω) = ∅ for ` ≥ 47, so we assume not and that L ∈
K(D`,Ω). With K as above, let f be the conductor for L/K. By a theorem of
Martinet [Coh00, Prop. 10.1.25], f = mOK for some integer m. Since ` ≥ 47, the
conductor is non-trivial, so m is divisible by some prime p.
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Now p`−1 | DL/K by equation (1), and so p2(`−1)d`K ≤ dL. Using that the
smallest value for dK = 3, we have

p(`−1)/` ≤ rd(L)

d
1/2
K

=
grd(L)√
dK

≤ Ω√
3
.

So,

p ≤
(

Ω√
3

)`/(`−1)
≤
(

Ω√
3

)47/46

< 28 .

Thus, p ≤ 23.
Let p be a prime of OK above p. If p is wildly ramified in L/K, then ` = p ≤ 23, a

contradiction to ` ≥ 47. So, p must be tamely ramified, which implies ` | Nm(p)−1,
Nm(p) being the numeric norm of the ideal for K/Q. So, 47 ≤ ` ≤ Nm(p)−1. Since
p < `, this forces p to be inert, so N(p) = p2. So, ` divides p2 − 1 = (p− 1)(p+ 1),
but with p < `, we cannot have ` | p− 1. Thus, ` | p + 1, which is a contradiction
since otherwise 47 ≤ ` ≤ p+ 1 ≤ 24. �
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