Name(s): t16n203
Order: 128 = 27
Parity: 1
|Aut(K)|=|CS16(G)|= 2
Subfields: 2T1, 2T1, 2T1, 4T1, 4T1, 4T2, 8T2
Other representations: 16T202, 16T199, 16T199, 16T199, 16T203, 16T202, 16T199, 16T203, 16T199, 16T199, 16T199, 16T203, 16T199
Resolvents
2: 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1
4: 4T1, 4T1, 4T1, 4T1, 4T1, 4T1, 4T1, 4T1, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2
8: 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3
16: 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T10, 8T10, 8T10, 8T10, 8T10, 8T10, 8T10, 8T10, 8T10, 8T10, 8T10, 8T10, 8T10, 8T10, 8T10, 8T10, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T3
32: 16T21, 16T21, 16T21, 16T21, 16T21, 16T21, 16T21, 16T21, 16T21, 16T21, 16T21, 16T21, 16T25, 16T25, 32T?
64: 32T?