Name(s): t16n603
Order: 256 = 28
Parity: 1
|Aut(K)|=|CS16(G)|= 2
Subfields: 2T1, 2T1, 2T1, 4T2, 8T22
Other representations: 16T603, 16T603, 16T603
Resolvents
2: 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1
4: 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2
8: 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3
16: 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T11, 8T11, 16T3
32: 8T18, 8T18, 8T18, 8T18, 8T22, 8T22, 16T18, 16T25, 16T25, 16T25, 16T25, 16T34, 16T34, 16T34, 16T34
64: 16T87, 16T105, 16T109, 16T109, 16T115, 16T115, 32T?
128: 32T?