Degree 16: T603

Name(s): t16n603

Order: 256 = 28

Parity: 1

|Aut(K)|=|CS16(G)|= 2

Subfields: 2T1, 2T1, 2T1, 4T2, 8T22

Other representations: 16T603, 16T603, 16T603

Resolvents
  2: 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1
  4: 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2
  8: 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3
  16: 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T11, 8T11, 16T3
  32: 8T18, 8T18, 8T18, 8T18, 8T22, 8T22, 16T18, 16T25, 16T25, 16T25, 16T25, 16T34, 16T34, 16T34, 16T34
  64: 16T87, 16T105, 16T109, 16T109, 16T115, 16T115, 32T?
  128: 32T?