Degree 16: T68

Name(s): t16n68

Order: 64 = 26

Parity: 1

|Aut(K)|=|CS16(G)|= 4

Subfields: 2T1, 2T1, 2T1, 4T1, 4T1, 4T2, 8T2, 8T22, 8T22

Other representations: 16T68, 16T68, 16T68, 16T68, 16T68, 16T68, 16T68

Resolvents
  2: 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1
  4: 4T1, 4T1, 4T1, 4T1, 4T1, 4T1, 4T1, 4T1, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2
  8: 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3
  16: 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T3
  32: 8T22, 8T22, 32T?