Degree 16: T453

Name(s): t16n453

Order: 256 = 28

Parity: 1

|Aut(K)|=|CS16(G)|= 4

Subfields: 2T1, 2T1, 2T1, 4T2, 8T22

Other representations: 16T453, 16T453, 16T453

Resolvents
  2: 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1
  4: 4T1, 4T1, 4T1, 4T1, 4T1, 4T1, 4T1, 4T1, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2
  8: 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T2, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3, 8T3
  16: 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T9, 8T11, 8T11, 8T11, 8T11, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T2, 16T3
  32: 8T22, 8T22, 16T18, 16T18, 16T19, 16T19, 16T19, 16T19, 16T19, 16T19, 16T19, 16T19, 16T25, 16T25, 32T?
  64: 16T68, 16T81, 16T109, 16T115, 16T115, 32T?, 32T?
  128: 32T?