Cumulative Quintic Tables

Fields are organized by the set S. We start with cases where S contains one prime.



Cases where S contains one prime

 
   S S5 A5 F5 D5 C5 Total
   {2}       0
   {3}       0
gp dvi {5}    2 1 3
   {7}       0
gp dvi {11}      11
   {13}       0
   {17}       0
   {19}       0
   {23}       0
   {29}       0
gp dvi {31}      11
   {37}       0
gp dvi {41}      11
   {43}       0
gp dvi {47}     1 1
   {53}       0
   {59}       0
gp dvi {61}      11
   {67}       0
gp dvi {71}      11
   {73}       0
gp dvi {79}     1  1
   {83}       0
   {89}       0
   {97}       0
gp dvi {101} 1  1 13
gp dvi {103}     1  1



Cases where S contains two primes

   S S5 A5 F5 D5 C5 Total
gp dvi {2,3} 5  1   6
gp dvi {2,5} 385 1941 67
gp dvi {3,5} 226 721 38
gp dvi {2,7} 2      2
   {3,7}           0
gp dvi {5,7} 4   7 2 1 14
gp dvi {2,11} 2   1 1 1 5
gp dvi {3,11}   2     1 3
gp dvi {5,11} 5   13 3 6 27
gp dvi {7,11} 1     1 1 3
gp dvi {2,13} 4   6     10
   {3,13}           0
gp dvi {5,13} 9 1 13   1 24
gp dvi {7,13}     1     1
gp dvi {11,13}       1 1 2
gp dvi {2,17} 3 1       4
gp dvi {3,17} 1 1 1     3
gp dvi {5,17} 12   14   1 27
gp dvi {7,17}       1   1
gp dvi {11,17}         1 1
gp dvi {13,17}     1     1
gp dvi {2,19} 2 1 1 1   5
gp dvi {3,19} 4 3       7
gp dvi {5,19} 8   13 2 1 24
gp dvi {7,19}       1   1
gp dvi {11,19} 1     2 1 4
gp dvi {13,19} 1         1
gp dvi {17,19} 1         1

Cases where S contains three primes

   S S5 A5 F5 D5 C5 Total
gp dvi {2,3,5} 135362 8281 1506
gp dvi {2,3,7} 1531 2   156
gp dvi {2,5,7} 45315 8391 561
gp dvi {3,5,7} 20525 4141 276

Case where S contains four primes

The next file contains all of the A5 fields, but contains only the A5 fields. It currently does not have class number entries filled in.

   S A5
gp dvi {2,3,5,7} 186

John Jones
Last modified: Thu Apr 1 10:13:58 MST 1999